Pacific Journal of Mathematics

Tensor products of Banach bundles.

J. W. Kitchen and D. A. Robbins

Article information

Source
Pacific J. Math., Volume 94, Number 1 (1981), 151-169.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102735914

Mathematical Reviews number (MathSciNet)
MR625815

Zentralblatt MATH identifier
0459.46047

Subjects
Primary: 46M05: Tensor products [See also 46A32, 46B28, 47A80]
Secondary: 46H25: Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX) 46M15: Categories, functors {For $K$-theory, EXT, etc., see 19K33, 46L80, 46M18, 46M20}

Citation

Kitchen, J. W.; Robbins, D. A. Tensor products of Banach bundles. Pacific J. Math. 94 (1981), no. 1, 151--169. https://projecteuclid.org/euclid.pjm/1102735914


Export citation

References

  • [1] J. Cigler, V. Losert, P. Michor, Banach Modules and Functors on Categories of Banach Spaces, Lecture Notes in Pure And Applied Mathematics,Vol. 46 Marcel Dekker, Inc., New York, 1979.
  • [2] J. M.G.Fell, Induced representations and Banach ^-algebras,Lecture Notes in Mathe- matics, Vol. 582, Springer.Verlag, 1977.
  • [3] B. R. Gelbaum, Tensor products and related questions, Trans. Amer. Math. Soc, 1O3 (1962), 525-548.
  • [4] K. H. Hofmann, Bundles and sheaves are equivalent in the category of Banach spaces, (toappear).
  • [5] J. W. Kitchen, Jr. and D. A. Robbins, Gelfand representation of Banach modules, Dissertationes Mathematicae, (to appear).
  • [6] H. Milne, Banach space properties of uniform algebras, Bull. London Math. Soc, 4 (1972), 323-326.
  • [7] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis, 1 (1967), 443-491.