Pacific Journal of Mathematics

Zonal multipliers on the Heisenberg group.

Giancarlo Mauceri

Article information

Source
Pacific J. Math., Volume 95, Number 1 (1981), 143-159.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102735536

Mathematical Reviews number (MathSciNet)
MR631666

Zentralblatt MATH identifier
0474.43009

Subjects
Primary: 43A80: Analysis on other specific Lie groups [See also 22Exx]
Secondary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 43A22: Homomorphisms and multipliers of function spaces on groups, semigroups, etc. 58G05

Citation

Mauceri, Giancarlo. Zonal multipliers on the Heisenberg group. Pacific J. Math. 95 (1981), no. 1, 143--159. https://projecteuclid.org/euclid.pjm/1102735536


Export citation

References

  • [1] R. Coifman and G. Weiss, Analyse harmonique non commutative sur certaines espaces homogenes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin, 1971.
  • [2] R. Coifman and G. Weiss, Transference methods in analysis, CBMS Regional Con- ference Series in Mathematics, No. 31, Amer. Math. Soc, (1977).
  • [3] L. De Michele and G. Mauceri, Lp multiplierson the Heisenberg group, Proc. Sym- posia Pure Math. Amer. Math. Soc, vol. 35 (1979).
  • [4] L. De Michele and G. Mauceri, Lp multipliers on the Heisenberg group, to appear in Michigan Math. J.
  • [5] A. Erdelyi et Al., Higher TranscendentalFunctions, Vol. II, Bateman Manuscript Project, McGraws-Hill, New York, 1955.
  • [6] G. B. Folland, Subelliptic estimates and function spaces on nilpotentLie groups, Ark. Math., 13 (1975), 161-207.
  • [7] G. B. Folland and M. E. Stein, Estimates for the db complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.
  • [8] D. Geller, Fourier analysis on the Heisenberg group, Ph. D. Thesis, Princeton University, (1977).
  • [9] D. Geller, Fourier analysis on the Heiseberg group, Proc. Natl. Acad. Sci. USA, 74 No. 4, (1977), 1328-1331.
  • [10] C. Herz, The theory of p-spaces with an applicationto convolutionoperators, Trans. Amer. Math. Soc, 154 (1971), 69-82.
  • [11] C. Herz, Une generalisation de la notion de ransformee de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24, 3 (1974), 145-157.
  • [12] A. Koranyi, S. Vagi and G. V. Welland, Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math, and Mech., 19, no. 12, (1970), 1069-1081.
  • [13] E. M. Stein, SingularIntegrals and DifferentiabilityProperties ofFunctions, Princeton Univ. Press, Princeton, N. J., 1S70.
  • [14] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.
  • [15] G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc, Providence, R. I., 1939.