Pacific Journal of Mathematics

$K$-theory for commutants in the Calkin algebra.

William L. Paschke

Article information

Source
Pacific J. Math., Volume 95, Number 2 (1981), 427-434.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102735079

Mathematical Reviews number (MathSciNet)
MR632196

Zentralblatt MATH identifier
0478.46056

Subjects
Primary: 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx]
Secondary: 46L05: General theory of $C^*$-algebras

Citation

Paschke, William L. $K$-theory for commutants in the Calkin algebra. Pacific J. Math. 95 (1981), no. 2, 427--434. https://projecteuclid.org/euclid.pjm/1102735079


Export citation

References

  • [1] W. B. Arveson, Notes on extensions of C*-algebras, Duke Math. J., 44 (1977), 329-355.
  • [2] L. G. Brown, Extensionsand the structure of C*-algebras, Symp. Math., 2O (1976), 539-566.
  • [3] L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C*-algebras, operators with compact self-commutators, and K-homology, Bull. Amer. Math. Soc, 79 (1973), 973-978.
  • [4] E. G. Effros and J. Rosenberg, C*-algebras with approximatelyinnerflip, Pacific J. Math., 77 (1978), 417-443.
  • [5] W. L. Paschke and N. Salinas, Matrix algebras over On, Michigan Math. J., 2 (1979), 3-12.
  • [6] M. Pimsner and D. Voiculescu, Exact sequences forK-groups and Ext-groups of certain cross-products C*-algebras,J. Operator Theory, 4 (1980), 93-118.
  • [7] M. Pimsner and S. Popa, The Ext-groups of some C*-algebras considered by J. Cuntz, Rev. Roum. Math. Pures Appl., 23 (1978), 1069-1076.
  • [8] M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous C*'-extensions of C(X) (g) K(H), part I, J. Operator Theory, 1 (1979), 55-108.
  • [9] S. Popa and M. A. Rieffel, The Ext groups of the C*-algebras associated with irrational rotations, J. Operator Theory, 3 (1980), 271-274.
  • [10] N. Salinas, Homotopy invariance of Ext(A), Duke Math. J., 44 (1977), 777-793.
  • [11] J. L. Taylor, Banach algebras and topology, in "Algebras in Analysis",Academic Press (1975), 118-186.
  • [12] D. Voiculescu, A non-commutativeWeyl-von Neumann theorem, Rev. Roum. Math. Pures Appl., 21 (1976), 97-113.