Pacific Journal of Mathematics

Some remarks about $C^{\infty}$ vectors in representations of connected locally compact groups.

L. Magnin

Article information

Source
Pacific J. Math., Volume 95, Number 2 (1981), 391-400.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102735076

Mathematical Reviews number (MathSciNet)
MR632193

Zentralblatt MATH identifier
0463.22004

Subjects
Primary: 22D10: Unitary representations of locally compact groups

Citation

Magnin, L. Some remarks about $C^{\infty}$ vectors in representations of connected locally compact groups. Pacific J. Math. 95 (1981), no. 2, 391--400. https://projecteuclid.org/euclid.pjm/1102735076


Export citation

References

  • [1] H. Boseck and C. Czichowski, Grundfunktionenund verallgemeinerteFunktionen auf topologischen Gruppen I, Math. Nachr., 58 (1973), 215-240.
  • [2] N. Bourbaki, Integration,Chap. VI, Hermann, Paris, 1968. 3.1Groupes et algebres de Lie, Chap. 2 et 3, Hermann, Paris, 1972.
  • [4] N. Bourbaki, Topologie Generate, Chapitres 5 a 10, Hermann, Paris, 1974.
  • [5] F. E. Browder, Real analytic functionson product spaces and separateanalyticity, Canad. J. Math., 13 (1961), 650-656.
  • [6] F. Bruhat, Distributions sur un groupe localement compact et applications a Vetude des representations des groupes p-adiques, Bull. Soc. Math. France, 89 (1961), fasc. 1, 43-75.
  • [7] J. Dixmier and P. Malliavin, Factorisation de fonctions et de vecteursindefiniment differentiates,Bull. Soc. Math., 1O2 (1978), 305-330.
  • [8] M. Flato and J. Simon, Separate and joint analyticityin Lie groups representa- tions, J. Functional Analysis, 13 (1973), 268-276.
  • [9] W. M. Gluschkow, Lie algebras of locally compact groups, Usp. Mat. Nauk XII, 74 (1957), 137-142 (Russian).
  • [10] R. K. Lashof, Lie algebras of locally compact groups, Pacific J. Math., 7 (1957), 1145-1162.
  • [11] R. Lipsman, Representationtheory of almost connected groups, Pacific J. Math., 42 (1972), 453-467.
  • [12] L. Magnin and J. Simon, Lie algebras associated with topological nilpotentgroups, Rep. on Math. Physics, 8 (1975), 171-180.
  • [13] L. Magnin and J. Simon, Vecteurs analytiques dansles representationsunitairesdes groupes localement compacts connexes, C. R. Acad. Sc. Paris, serie A, 289 (1979), 715-718.
  • [14] C. C. Moore, Groups with finite dimensionalirreducible representations, Trans. Amer. Math. Soc, 166 (1972), 401-410.
  • [15] J. Pichaud, 1-cohomologie de representations induites, J. Math. Pures et appl., 56 (1977), 339-366.
  • [16] G. Warner, Harmonic Analysis on Semi-simpleLie Groups I, Springer Verlag, 1972.
  • [17] C. Zuily, Problemes de distributions, Hermann, Paris, 1978.