Pacific Journal of Mathematics

On $g$-metrizability.

L. Foged

Article information

Source
Pacific J. Math., Volume 98, Number 2 (1982), 327-332.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102734259

Mathematical Reviews number (MathSciNet)
MR650013

Zentralblatt MATH identifier
0478.54025

Subjects
Primary: 54E35: Metric spaces, metrizability
Secondary: 54E65

Citation

Foged, L. On $g$-metrizability. Pacific J. Math. 98 (1982), no. 2, 327--332. https://projecteuclid.org/euclid.pjm/1102734259


Export citation

References

  • [1] A. Arhangeskii, Mappings and spaces, Russ. Math. Surveys, 21 (1966), no. 4, 115-162.
  • [2] A. Arhangeskii and S. Franklin, Ordinal invariants for topological spaces, Michigan Math. J., 15 (1968), 313-320.
  • [3] L. Foged, Separationin k-and-^ spaces, to appear.
  • [4] S. Franklin, Spaces which sequence suffice. Fund. Math., 57 (1965), 107-115.
  • [5] R. Heath, Arcwise connectedness in semi-metric spaces, Pacific J. Math., 12 (1962), 1301-1319.
  • [6] K. Lee, On certain g-first countable spaces, Pacific J. Math., 65 (1976), 113-118.
  • [7] E. Michael, #ospace, J. Math. Mech., 15 (1966), 983-1002.
  • [8] F. Siwiec, On defining a space by a weak base, Pacific J. Math., 52 (1974), 233-245.