Pacific Journal of Mathematics

Operator-valued Pick's conditions and holomorphicity.

Jacob Burbea

Article information

Source
Pacific J. Math., Volume 98, Number 2 (1982), 295-311.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102734256

Mathematical Reviews number (MathSciNet)
MR650010

Zentralblatt MATH identifier
0474.30008

Subjects
Primary: 32A99: None of the above, but in this section
Secondary: 30G30: Other generalizations of analytic functions (including abstract-valued functions) 47A99: None of the above, but in this section

Citation

Burbea, Jacob. Operator-valued Pick's conditions and holomorphicity. Pacific J. Math. 98 (1982), no. 2, 295--311. https://projecteuclid.org/euclid.pjm/1102734256


Export citation

References

  • [1] L. V. Ahlfors, ConformalInvariants:Topics in GeometricFunctionTheory, McGraw-Hill, New York, 1973.
  • [2] N. Aronszajn, Theory of reproducingkernels, Trans. Amer. Math. Soc, 68 (1950), 337-404.
  • [3] J. Burbea, A generalizationof Pick'stheorem and its application tointrinsic metrics, Annal. Polon. Math., 39 (1981), 49-61. 4% yOn metrics and distortion theorems, recent developments in several complex variables, Annals Math. Studies, 100 (1981), 65-92.
  • [5] J. Burbea, Pick's theorem with operator-valued holomorphic functions,Kdai Math. J., 4 (1981), to appear.
  • [6] J. Burbea, and P. Masani, Hilbert spaces of Hubert space valued functions,Proc. Probability Theory on Vector Spaces II, Blazejwko 1979, Springer Lecture Notes in Math., 828 (1980), 1-20.
  • [7] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer- Verlag, New York, 1974.
  • [8] A. C. Hindmarsh, Pick's conditions and analyticity,Pacific J. Math., 27 (1968), 527-531.
  • [9] G. Pick, Uber die BeschrankungenanalytischerFunktionen,welche durch vorge- gebene Funkionswerte bewirkt werden, Math. Ann., 77 (1916), 7-23.
  • [10] J. Rovnyak, Some Hilbert Spaces of Analytic Functioons, Dissertation, Yale Univ., 1963.
  • [11] S. Saitoh, The Rudin kernel and the extremal functionsin Hardy classes, Kdai Math. Sem. Rep., 25 (1973), 37-47.
  • [12] S. Suita, On a metric induced by analytic capacity, Kdai Math. Sem. Rep., 25 (1973), 215-218.
  • [13] B. Sz. Nagy, and C. Foias, HarmonicAnalysisof Operatorson HilbertSpace, North-Holland, Amsterdam, 1970.