Pacific Journal of Mathematics

Structure spaces for sandwich semigroups.

K. D. Magill, Jr., P. R. Misra, and U. B. Tewari

Article information

Source
Pacific J. Math., Volume 99, Number 2 (1982), 399-412.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102734024

Mathematical Reviews number (MathSciNet)
MR658069

Zentralblatt MATH identifier
0475.54013

Subjects
Primary: 54H15: Transformation groups and semigroups [See also 20M20, 22-XX, 57Sxx]
Secondary: 20M99: None of the above, but in this section 54D35: Extensions of spaces (compactifications, supercompactifications, completions, etc.)

Citation

Magill, K. D.; Misra, P. R.; Tewari, U. B. Structure spaces for sandwich semigroups. Pacific J. Math. 99 (1982), no. 2, 399--412. https://projecteuclid.org/euclid.pjm/1102734024


Export citation

References

  • [1] L. Gillman and M. Jerison, Rings of Continuous Functions,Springer-Verlag, 1976.
  • [2] H. 0. Kim, On the product of structure spaces, Kyungpook Math. J., 11 (1971), 29-32.
  • [3] K. D. Magill, Semigroup structures for familiesof functions,I, J. Aust. Math. Soc, 7 (1967), 81-94. 4# 1Semigroup structures for familiesof functions,II, J. Aust. Math. Soc, 7 (1967), 95-107.
  • [5] K. D. Magill, Topological spaces determined by left ideals of semigroups, Pacific Math. J., (2) 24 (1968), 319-330.
  • [6] K. D. Magill,Structurespaces of semigroups of continuous functions,Trans. Amer. Math. Soc, 149 (1970), 595-600.
  • [7] K. D. Magill, ^-Structurespaces of semigroups generated by idempotents, LondonMath. J., (2) 3 (1971), 321-325. g# 1A survey of semigroups of continuous self maps, Semigroup Forum, 11 (1975), 189-282.
  • [9] K. D. Magill and S. Subbiah, Green's relations for regular elements of semigroups of endomorphisms, Canad. J. Math., 26 (1974), 1484-1497.
  • [10] K. D. Magill and S. Subbiah, Green's relations for regular elements of Sandwich semigroups,I, general results, Proc. London Math. Soc, 3 (31), 194-210.
  • [11] K. D. Magill and S. Subbiah, Green's relations for regular elements of Sandwich semigroups, II; semi- groups of continuous functions, J. Aust. Math. Soc, 25 (1978),45-65.
  • [12] S. Mrwka, Furtherresults on E-compact spaces, I, Acta Math., 12O (1968), 161-185.
  • [13] R. P. Sullivan, Automorphismsof transformationsemigroups;J. Aust. Math. Soc, 20 (1975) 1, 77-84.
  • [14] J. S. V. Symons, On a generalization of the transformationsemigroup, J. Aust. Math. Soc, 19 (1975), 47-61.
  • [15] J. S. V. Symons, Embedding a semigroup of transformations,J. Aust. Math. Soc, 20 (1975), 222-224.