Pacific Journal of Mathematics

Resolution of ambiguities in the evaluation of cubic and quartic Jacobsthal sums.

Richard H. Hudson and Kenneth S. Williams

Article information

Source
Pacific J. Math., Volume 99, Number 2 (1982), 379-386.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102734022

Mathematical Reviews number (MathSciNet)
MR658067

Zentralblatt MATH identifier
0477.10030

Subjects
Primary: 10G15

Citation

Hudson, Richard H.; Williams, Kenneth S. Resolution of ambiguities in the evaluation of cubic and quartic Jacobsthal sums. Pacific J. Math. 99 (1982), no. 2, 379--386. https://projecteuclid.org/euclid.pjm/1102734022


Export citation

References

  • [1] B.C. Berndt and R.J. Evans, Sums of Gauss, Jacobi and Jacobsthal, J. Number Theory, 11 (1979), 349-398.
  • [2] B.W. Brewer, On certain character sums, Trans. Amer. Math. Soc, 99 (1961), 241-245.
  • [3] S. Chowla, The last entry in Gauss's diary, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 244-246.
  • [4] T. Gosset, On the law of quartic reciprocity, Mess. Math., 41 (1911), 65-90.
  • [5] R. H. Hudson and K. S. Williams, An application of Western's formulaeto the evaluation of certain Jacobsthal sums, (to appear in Acta Arithmetica).
  • [6] C. G. J. Jacobi, De residuis cubicis commentatio numerosa, J. Reine Angew. Math., 2 (1827), 66-69.
  • [7] E. Jacobsthal, Uber die Darstellung der Primzahlen der Form 4n+l als Summe zweier Quadrate, J. Reine Angew. Math., 132 (1907), 238-245.
  • [8] Emma Lehmer, On the number of solutions of uk + D=w2 (mod p), Pacific J. Math., 5 (1955), 103-118. 9.1Criteria for cubic and quartic residuacity, Mathematika, 5 (1958), 20-29.
  • [10] Emma Lehmer, On Euler's criterion, J. Austral. Math. Soc, 1 (1959), 64-70.
  • [11] B. S. Nashier and A. R. Rajwade, Determinationof a unique solution of the quad- ratic partition for primes p = l (mod 7), Pacific J. Math., 72 (1977), 513-521.
  • [12] T. Pepin, Memoire sur les lots de reciprocity relatives aux residus de puissances, Accademia pontificia dei nuovi lincei. Atti, 31 (1878), 40-148.
  • [13] L. von Schrutka, Ein Beweis fur die Zerlegbarkeit der Primzahlen der Form 6n + 1 in ein einfaches und ein dreifaches Quadrat, J. Reine Angew. Math., 140 (1911), 252-265.
  • [14] A. L. Whiteman, Cyclotomy and Jacobsthal sums, Amer. J. Math., 74 (1952), 89-99.
  • [15] K. S. Williams, On Euler's criterion for cubic nonresidues, Proc. Amer. Math. Soc, 49 (1975), 277-283.
  • [16] K. S. Williams, On Euler's criterion for quintic nonresidues, Pacific J. Math., 61 (1975), 543-550.