Pacific Journal of Mathematics

Strict local inclusion results between spaces of Fourier transforms.

Walter R. Bloom

Article information

Source
Pacific J. Math., Volume 99, Number 2 (1982), 265-270.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102734014

Mathematical Reviews number (MathSciNet)
MR658059

Zentralblatt MATH identifier
0477.43006

Subjects
Primary: 43A25: Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups

Citation

Bloom, Walter R. Strict local inclusion results between spaces of Fourier transforms. Pacific J. Math. 99 (1982), no. 2, 265--270. https://projecteuclid.org/euclid.pjm/1102734014


Export citation

References

  • [1] J.-P. Bertrandias, C. Datry et C. Dupuis, Unions et intersections d'espaces Lv invariantes par translation ou convolution, Ann. Inst. Fourier (Grenoble), 28 (1978), 53-84.
  • [2] J.-P. Bertrandias et C. Dupuis, Transformationde Fourier sur les espaceslp(Lp'), Ann. Inst. Fourier (Grenoble), 29 (1979), 189-206.
  • [3] Michael Cowling, Some applications of Grothendieck's theory of topological tensor products in harmonic analysis, Math. Ann., 232 (1978),273-285.
  • [4] John J. F. Fournier, Local complements to the Hausdorff-Young theorem, Michigan Math. J., 20 (1973), 263-276.
  • [5] G. I. Gaudry, Multipliers of type (p, q), Pacific J. Math., 18 (1966),477-488.
  • [6] Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Bande 115, 152, Springer-Verlag, Berlin, Heidelberg, New York, 1963, 1970.
  • [7] Lars Hrmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), 93-140.
  • [8] Yitzhak Katznelson, An Introduction to Harmonic Analysis, John Wiley and Sons, New York, London, Sydney, Toronto, 1968.
  • [9] James Stewart, Fourier transformsof unbounded measures, Canad. J. Math., 31 (1979), 1281-1292.