Pacific Journal of Mathematics

Pseudocompact group topologies and totally dense subgroups.

W. W. Comfort and T. Soundararajan

Article information

Source
Pacific J. Math., Volume 100, Number 1 (1982), 61-84.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102725380

Mathematical Reviews number (MathSciNet)
MR661441

Zentralblatt MATH identifier
0488.22010

Subjects
Primary: 22B05: General properties and structure of LCA groups
Secondary: 54A10: Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)

Citation

Comfort, W. W.; Soundararajan, T. Pseudocompact group topologies and totally dense subgroups. Pacific J. Math. 100 (1982), no. 1, 61--84. https://projecteuclid.org/euclid.pjm/1102725380


Export citation

References

  • [1] Heinz Bachmann, Trans finite Zahlen,Ergebnisseder Mathematik and ihrer Grenzgebiete vol. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
  • [2] W. W. Comfort and G. L. Itzkowitz, Density character in topological groups, Math. Annalen, 226 (1977), 223-227.
  • [3] W. W. Comfort and S. Negrepontis, The Theory ofUltrafilters,Grundlehren der math. Wissenschaften vol. 211, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
  • [4] W. W. Comfort and Lewis C. Robertson, Proper pseudocompact extensions of com- pact Abelian group topologies, Proc. Amer. Math. Soc, to appear.
  • [5] W. W. Comfort and Lewis C. Robertson,Cardinality constraints for pseudocompact and for totally dense subgroups of compact Abelian groups, manuscript in preparation.
  • [6] W. W. Comfort and K. A. Ross, Topologies induced by groups ofcharacters, Fundamenta Math., 55 (1964), 283-291.
  • [7] W. W. Comfort and K. A. Ross,Pseudocompactness and uniform continuityin topological groups, Pacific J. Math., 16 (1966), 483-496.
  • [8] W. W. Comfort and T. Soundararajan, Pseudocompact topological group topologies, Abstracts Amer. Math. Soc, 2 (1981), 87 [Abstract 783-22-5].
  • [9] H. H. Corson, Normalityin subsets of product spaces, American J. Math., 81 (1959), 785-796.
  • [10] Dotchin Dotchinov, Produits de groups topologiques minmaux,Bull. Sci. Math 2e serie, 96 (1972), 59-64.
  • [11] R. Engelking, Outline of General Topology, North-Holland Publ. Co., Amsterdam andJohn Wiley and Sons, Inc., New York, 1968.
  • [12] Laszl Fuchs, Infinite Abelian Groups Volume I, Pure and Applied Mathematics Vol. 36, Academic Press, New York and London, 1970.
  • [13] Leonard Gillman and Meyer Jerison, Rings of Continuous Functions,D. Van Nostrand Co., Inc., Princeton, N. J., 1960.
  • [14] Irving Glicksberg, Stone-Cech compactifications of products, Trans. Amer. Math. Soc,90 (1959), 369-382.
  • [15] Douglass L. Grant, Topological groups which satisfy an open mappingtheorem, Pacific J. Math., 68 (1977), 411-423.
  • [16] Douglass L. Grant, Arbitrarypowers of the roots of unity are minimal Hausdorff topologi- cal groups, Topology Proceedings, 4 (1979), 103-108.
  • [17] Edwin Hewitt, Rings of real-valued continuous functionsI, Trans. Amer. Math. Soc,64 (1948), 45-99.
  • [18] Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic AnalysisI, Grundlehren dermath. Wissenschaften vol. 115, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963.
  • [19] Edwin Hewitt and Kenneth A. Ross,Abstract Harmonic Analysis II, Grundlehren der math.Wissenschaften vol. 152, Springer-Verlag, New York-Heidelberg-Berlin, 1970.
  • [20] Gerald L. Itzkowitz, Extensionof Haar measure for compact connected Abelian groups, Bull. Amer. Math. Soc, 71 (1965), 152-156.
  • [21] S. Janakiraman and T. Soundararajan, Totally bounded topological groups, Pacific J. Math., to appear.
  • [22] J. M. Kister, Uniform continuityand compactness in topological groups, Proc. Amer. Math. Soc, 13 (1962), 37-40.
  • [23] M. Rajagopalan, Topologies in locally compact groups, Math. Annalen, 176 (1968), 169-180.
  • [24] N. W. Rickert, Locally compact topologies for groups, Trans. Amer. Math. Soc, 126 (1967), 225-235.
  • [25] K. A. Ross, Closed subgroups of locally compact Abelian groups, Fundamenta Math., 56 (1965), 241-244.
  • [26] T. Soundararajan, Galois theory for general extension fields, Crelle J., 241 (1970), 49-63.
  • [27] T. Soundararajan, Totally dense subgroups of topological groups, pp. 299-300 in: General Topology and Its Relations to Modern Analysis and Algebra III, Proc 1968 Kanpur Topological Conference, Academia, Prague, 1971.
  • [28] T. Soundararajan, Cohomologyof Galois extentions, J. Pure and Applied Algebra, 11 (1977), 139-150.
  • [29] T. Soundararajan, Pseudocompact subgroups of Galois groups, to appear.
  • [30] R. M. Stephenson, Jr., Minimaltopological groups, Math. Annalen, 192 (1971), 193-195.
  • [31] L. J. Sulley, A note on B- and Br~complete topological groups, Proc. Cambridge Phil. Soc, 66 (1969), 275-279.
  • [32] Andre Weil, Sur les espaces a structure uniformeet surla topologie generale, Publ. Math. Univ. Strasbourg, Hermann & Cie., Paris, 1937.
  • [33] Howard J. Wilcox, Dense subgroups of compact groups, Proc. Amer. Math. Soc, 28 (1971), 578-580. 34.1Pseudocompact groups, Pacific J. Math., 19 (1966), 365-379.