Pacific Journal of Mathematics

Countable decompositions of $E^{n}$.

David G. Wright

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 603-609.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723986

Mathematical Reviews number (MathSciNet)
MR705253

Zentralblatt MATH identifier
0503.57007

Subjects
Primary: 57N15: Topology of $E^n$ , $n$-manifolds ($4 \less n \less \infty$)
Secondary: 54B15: Quotient spaces, decompositions

Citation

Wright, David G. Countable decompositions of $E^{n}$. Pacific J. Math. 103 (1982), no. 2, 603--609. https://projecteuclid.org/euclid.pjm/1102723986


Export citation

References

  • [1] S. Armentrout and T. M. Price, Decompositions into compact sets with UV properties, Trans. Amer. Math. Soc, 141 (1969), 433-442.
  • [2] R. H. Bing, A decomposition of Ez into points and tame arcs such that the decom- position space is topologically different from Ez, Ann. of Math., (2) 65 (1957), 484-500.
  • [3] R. H. Bing,Point-like decompositions of E3, Fund. Math., 50 (1962), 431-453.
  • [4] R. H. Bing, Upper semicontinuousdecompositions of Es, Ann. of Math., (2) 65 (1957), 363-374.
  • [5] J. W. Cannon, Shrinkingcell-like decompositions of manifolds,Codimension three, Ann. of Math., (2) 110 (1979), 83-112.
  • [6] R. J. Daverman, A nonshrinkable decomposition of Sn determined by a null sequence of cellular sets, Proc. Amer. Math. Soc, 75 (1979), 171-176.
  • [7] W. T. Eaton, A generalization of the dogbone space to En, Proc. Amer. Math. Soc, 39 (1973), 379-387.
  • [8] R. D. Edwards, Approximatingcertain cell-like maps by homeomorphisms, (man- uscript). See Notices Amer. Math. Soc, 24 (1977), A-649, S751-G5.
  • [9] R. D. Edwards, Demension Theory, I, Geometric Topology, Proceedings of the Geometric Topology Conference held at Park City, Utah, 1974 (edited by L. C. Glaser and T. B. Rushing), Springer-Verlag (New York), 194-211.
  • [10] W. Hurewicz and H. Wallman, DimensionTheory, Princeton, 1941.
  • [11] G. Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc, 21 (1969), 88-92.
  • [12] R. C. Lacher, Cell-like mappings 1, Pacific J. Math., 30 (1969), 717-731.
  • [13] C. P. Rourke and B. J. Sanderson, Introductionto Piecewise-linear Topology, Springer-Verlag, 1972.
  • [14] S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc, 8 (1957), 604-610.
  • [15] D. G. Wright, A decomposition of En(n ^ 3) into points and a null sequence of cellular sets, General Topology and its Applications, 10 (1979), 297-304.