Pacific Journal of Mathematics

A Fourier transform theorem on nilmanifolds and nil-theta functions.

Richard Penney

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 539-568.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723982

Mathematical Reviews number (MathSciNet)
MR705249

Zentralblatt MATH identifier
0511.43005

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]
Secondary: 14K25: Theta functions [See also 14H42] 22E25: Nilpotent and solvable Lie groups

Citation

Penney, Richard. A Fourier transform theorem on nilmanifolds and nil-theta functions. Pacific J. Math. 103 (1982), no. 2, 539--568. https://projecteuclid.org/euclid.pjm/1102723982


Export citation

References

  • [1] L. Auslander, An exposition of the structure of solvmanifolds, Part I, Bull. Amer. Math. Soc, 79 (1973), 227-261.
  • [2] L. Auslander and R. Tolimieri, Abelian harmonic analysis, tketa functions and func- tion algebras on a nilmanifold,Lecture Notes in Mathematics, #436, Springer, Berlin, 1975.
  • [3] Cartier, Quantum mechanical commutation relations and Theta functions, Proceed- ings of the Boulder symposium on algebraic groups and discontinuous subgroups, 1966.
  • [4] Corwin, Greenleaf, Penney, A general character formula for irreducible projections on L2 of a nilmanifold,Math. Ann., 225 (1977), 21-32.
  • [5] R. Howe, On Frobenius reciprocity for unipotent algebraic groups over Q, Amer. J. Math., 43 (1971), 163-172. 6.1On a connection between nilpotent groups and oscillatory integrals asso- ciated to singularities,Pacific. J. Math., 73 (1977), 329-364.
  • [7] A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Mathematical Surveys, 17 (1962), 53-104.
  • [8] C. Moore and J. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc, 185 (1973), 445-462.
  • [9] N. S. Poulsen, On C-vectors and intertwiningbilinear forms forrepresentations of Lie groups, J. Functional Analysis, 9 (1972), 87-120.
  • [10] L. Richardson, Decomposition of the L2 space of a general compactnilmanifold, Amer. J. Math., 43 (1971), 173-190.