Pacific Journal of Mathematics

Strong result for real zeros of random polynomials.

M. N. Mishra, N. N. Nayak, and S. Pattanayak

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 509-522.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723980

Mathematical Reviews number (MathSciNet)
MR705247

Zentralblatt MATH identifier
0505.60034

Subjects
Primary: 60G99: None of the above, but in this section

Citation

Mishra, M. N.; Nayak, N. N.; Pattanayak, S. Strong result for real zeros of random polynomials. Pacific J. Math. 103 (1982), no. 2, 509--522. https://projecteuclid.org/euclid.pjm/1102723980


Export citation

References

  • [1] J. E. A. Dunnage, The number of real zeros of a class of random algebraic poly- nomials, Proc. London Math. Soc, (3) 18 (1968), 439-460.
  • [2] J. E. A. Dunnage, The number of real zeros of a class of random algebraic polynomials II, Quart. J. Math. Oxford, (2), 21 (1970), 309-319.
  • [3] J. E. A. Dunnage,The number of real zeros of a class of random algebraic polynomials III, J. London Math. Soc, (2) 6 (1972), 143-152.
  • [4] E. A. Evans, On the number of real roots of a random algebraic equation, Proc. London Math. Soc, 15 (1965), 731-749.
  • [5] B. V. Gnedenko and A. N. Kolmogorov, Limit Distribution of Sums of Independent Random Variables, Addison Wesley, Inc., 1954.
  • [6] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequence of Random Variables, Wolters-Noordhoff Publishing Groningen, 1972.
  • [7] LA. Ibragimov and N. B. Maslova, On the expected number of real zeros of random algebraic polynomial1.Coefficients with zero means, (Translated by B. Seckler), Theor. Probability Application, XVI, 2 (1971), 228-248.
  • [8] J. E. Littlehood and A. C. Offord, On the number of real roots of a random algebraic equation II, Proc Cambridge Phil. Soc, 35 (1939), 133-148.
  • [9] M. N. Mishra and N. N. Nayak, On the lower bound of the number of real roots of a random algebraic equation, accepted in the Journal of I. M. S. for publication.
  • [10] G. Samal, On the number of real roots of a random algebraic equation, Proc Cambridge Phils. Soc, 58 (Part 3) (1962), 433-442.
  • [11] G. Samal and M. N. Mishra, On the lower bound of the number of real roots of a random algebraic equation with infinite variance, Proc Amer. Math. Soc, 33 (1972), 523-528.
  • [12] G. Samal and M. N. Mishra, On the lower bound of the number of real roots of a random algebraic equation with infinite variance II, Proc Amer. Math. Soc, 36 (1972), 557-563.
  • [13] G. Samal and M. N. Mishra, On the lower bound of the number of real roots of a random algebraic equation with infinite variance III, Proc Amer. Math. Soc, 39 (1973). 184-189,