Pacific Journal of Mathematics

On extensions of nets.

D. Jungnickel and S. S. Sane

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 437-455.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723976

Mathematical Reviews number (MathSciNet)
MR705243

Zentralblatt MATH identifier
0504.05020

Subjects
Primary: 05B30: Other designs, configurations [See also 51E30]
Secondary: 05B15: Orthogonal arrays, Latin squares, Room squares

Citation

Jungnickel, D.; Sane, S. S. On extensions of nets. Pacific J. Math. 103 (1982), no. 2, 437--455. https://projecteuclid.org/euclid.pjm/1102723976


Export citation

References

  • [1] R. C. Bose andK. A. Bush, Orthogonal arraysof strength two and three, Ann. Math. Stat., 23 (1952), 508-524.
  • [2] R. H. Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math., 13 (1963), 421-457.
  • [3] A. Bruen, Unimbeddable nets of small deficiency, Pacific J. Math., 43 (1972), 51-54.
  • [4] P. Dembowski, Eine Kennzeichnungder endlichenaffinenRume, Arch. Math., 15 (1964), 146-154. 5 fFinite Geometries, Springer, Berlin-Heidelberg-New York, 1968.
  • [6] D. A. Drake, Maximal sets of Latin squares and partial transversals, J. Stat. PI. Inf., 1 (1977), 143-149.
  • [7] D. A. Drake, Partial -geometries and generalized Hadamardmatrices over groups, Canad. J. Math., 31 (1979), 617-627.
  • [8] D. A. Drake and D. Jungnickel, Klingenberg structuresand partialdesigns II. Regularity and uniformity,Pacific J. Math., 77 (1978), 389-415.
  • [9] H. Hanani, On transversal designs.In: Proceedings of the Advanced Study Insti- tute on Combinatorics (Beukelen 1974), 42-52. Mathematical Centre Tracts, 55, Mathe- matisch Centrum, Amsterdam (1974).
  • [10] T. C. Hine and V. C. Mavron, Embeddable transversal designs, Discr. Math., 29 (1980), 191-200.
  • [11] D. Jungnickel, On difference matrices, resolvable transversal designs and generalized Hadamard matrices, Math. Z., 167 (1979), 49-60.
  • [12] D. Jungnickel, On automorphism groups of divisible designs, Canad. J. Math., 34 (1982), 257-297.
  • [13] V. C. Mavron, Translationsand parallel classes of lines in afne designs, J. Combinatorial Theory Series A, 22 (1977), 322-330.
  • [14] V. C. Mavron,Resolvable designs, affine designs and hypernets, Preprint No. 99, FPS Kombinatorische Mathematik, Freie Universitat, Berlin, 1979.
  • [15] D. Raghavarao, Constructions and Combinatorial Problems in Design ofExperi- ments, Wiley, New York, 1971.
  • [16] S. S. Shrikhande, The uniqueness of the L^-association scheme, Ann. Math. Stat., 30 (1959), 781-798.
  • [17] S. S. Shrikhande, A note on mutuallyorthogonal Latin squares, Sankhya Series A, 23 (1961), 115-116.
  • [18] S. S. Shrikhande, Affine resolvable balanced incomplete block designs:A survey, Aequ. Math., 14 (1976), 251-269.
  • [19] S. S. Shrikhande and Bhagwandas, A note on embedding of orthogonal arrays of strength two.In:Combinatorial mathematics and its applications, 256-273. Univ. of North Carolina Press, 1969.
  • [20] S. S. Shrikhande and N. M. Singhi, A note on embedding of orthogonal arrays of strength two, J. Stat. Planning Inf., 3 (1979), 267-271.
  • [21] S. S. Shrikhande and N. M. Singhi, Embedding of orthogonal arrays of strength two and deficiency greater than two, J. Stat. Planning Inf., 3 (1979), 367-379.
  • [22] E. Verheiden, Integral and rationalcompletion of combinatorial matrices, J. Combinatorial Theory A, 25 (1978), 267-276.