Pacific Journal of Mathematics

On the Lorimer-Rahilly and Johnson-Walker translation planes.

Vikram Jha and Michael J. Kallaher

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 409-427.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723973

Mathematical Reviews number (MathSciNet)
MR705240

Zentralblatt MATH identifier
0541.51007

Subjects
Primary: 51E15: Affine and projective planes
Secondary: 51A40: Translation planes and spreads

Citation

Jha, Vikram; Kallaher, Michael J. On the Lorimer-Rahilly and Johnson-Walker translation planes. Pacific J. Math. 103 (1982), no. 2, 409--427. https://projecteuclid.org/euclid.pjm/1102723973


Export citation

References

  • [1] J. Andre Uber nicht-Desarguessche Ebenen mit transitivertranslations-gruppe, Math Z., 60 (1954), 156-186.
  • [2] P. Dembowski, Finite Geometries, Berlin-Heidelberg-New York, SpringerVerlag, 1968.
  • [3] L. E. Dickson, Linear Groups, New York, Dover Publications, Inc.,1958.
  • [4] J. D. Dixon, The Structure of Linear Groups, London-Cincinnati-New York, Van Nostrand Reinhold, 1971.
  • [5] D. A. Foulser, Subplanes of partial spreads in translation planes, Bull. London Math. Soc, 4 (1972),32-38.
  • [6] D. A. Foulser, Baer p-elements in translation planes, J. Algebra, 31 (1974), 354-366.
  • [7] R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in GF(2n), Ann. Math., (2) 27 (1925-26), 140-158.
  • [8] C. Hering, On shears of translation planes, Abh. Math. Sem. Hamb., 37 (1972), 258-268.
  • [9] K. Hoffman, and R. Kunze, Linear Algebra, Englewood Cliffs, Prentice-Hall, 1971.
  • [10] B. Huppert, Endliche Gruppen I, Berlin-Heidelberg-New York, Springer-Verlag,1967,
  • [11] V. Jha, On tangentially transitive translation planes and related systems, Geom. Dedi., 4 (1975),457-484.
  • [12] N. L. Johnson and T. G. Ostrom, Tangentially transitiveplanes of order 16, J. Geometry, 10 (1977), 146-163.
  • [13] N. L. Johnson and T. G. Ostrom, Translation planes of characteristic two in which all involutionsare Baer, J. Algebra, 54 (1978),291-315.
  • [14] N. L. Johnson and T. G. Ostrom,The translationplanes of order 16 that admit PSL (2, 7), J. Comb- inatorial Series Theory, A 26 (1979), 127-134.
  • [15] M. J. Kallaher and T. G. Ostrom, Collineation groups irreducible on the compo- nents of a translation plane, Geometriae Dedicata, in press.
  • [16] P. Lorimer, A protective plane of order 16, J. Combinatorial Series Theory, A 16 (1974),334-347.
  • [17] H. Lneburg, Charakterisierungder endlichen desarguesschen projektiven Ebenen, Math. Z., 85 (1964), 419-450.
  • [18] H. H. Mitchell, Determination of ordinary and modular ternarylineargroups, Trans. Amer. Math. Soc, 12 (1911),207-242.
  • [19] T. G. Ostrom, Finite Translation Planes, Lecture Notes in Mathematics, No.158, Berlin-Heidelberg-New York, Springer-Verlag, 1970.
  • [20] T. G. Ostrom, Finite translation planes, an exposition, Aeq. Math., 15 (1977), 121-133.
  • [21] A. Rahilly, Some translationplanes with elations which are nottranslations, Combinatorial Mathematics III (Proc. Third Austral. Conf., Univ. Queensland, St. Lucia, 1974), p. 197-209. Lecture Notes in Mathematics, No. 452, Berlin-Heidelberg-New York, Springer-Verlag, 1970.
  • [22] M. Walker, A note on tangentially transitive affine planes, Bull. London Math. Soc, 8 (1976), 273-277.