Pacific Journal of Mathematics

Carleson measures for functions orthogonal to invariant subspaces.

Bill Cohn

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 347-364.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723968

Mathematical Reviews number (MathSciNet)
MR705235

Zentralblatt MATH identifier
0509.30026

Subjects
Primary: 30D55
Secondary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]

Citation

Cohn, Bill. Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math. 103 (1982), no. 2, 347--364. https://projecteuclid.org/euclid.pjm/1102723968


Export citation

References

  • [1] P. R. Ahera and D. N. Clark, On functionsorthogonal to invariant subspaces, Acta Math., 124 (1970), 191-204.
  • [2] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math., 76 (1962), 547-559.
  • [3] D. N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math., 25 (1972), 169-191.
  • [4] R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariantsub- spaces for the backwards shift, Ann. Inst. Fourier, Grenoble, 20, 1, (1970), 37-76.
  • [5] P. L. Duren, Theory of Hp Spaces, Academic Press, 1970.
  • [6] O. Frostman, Potential dfequilibre et capacite des ensembles avec quelques appli- cations a la theorie des fonctions, Meddel. Lunds Univ. Mat. Sem., 3 (1935), 1-118.
  • [7] V. Grenander and G. Szego, Toeplitz Forms and Their Applications,University of California Press, 1958.
  • [8] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Com- pany, 1975.