Pacific Journal of Mathematics

Rank$_{2}$ $p$-groups, $p>3$, and Chern classes.

Kahtan Alzubaidy

Article information

Source
Pacific J. Math., Volume 103, Number 2 (1982), 259-267.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723960

Mathematical Reviews number (MathSciNet)
MR705227

Zentralblatt MATH identifier
0468.57029

Subjects
Primary: 20J06: Cohomology of groups

Citation

Alzubaidy, Kahtan. Rank$_{2}$ $p$-groups, $p>3$, and Chern classes. Pacific J. Math. 103 (1982), no. 2, 259--267. https://projecteuclid.org/euclid.pjm/1102723960


Export citation

References

  • [1] K. Alzubaidy, Metacyclic P-groups and Chern classes, Illinois J. Math., 26 (3) (1982). 423-431.
  • [2] M. F. Atiyah, Characters and Cohomology of finite groups, I.H.E.S. Publ. Math., 9 (1961), 23-64.
  • [3] W. Burnside, Theory of groups of finite order, 2nd edition, Dover Publ. 1955.
  • [4] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, N.J., 1956.
  • [5] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebra, Inter-Science, New York, 1962.
  • [6] L. Evans, A generalization of the transfer map in cohomology of groups, Trans. Amer. Math. Soc, 108 (1963), 54-65.
  • [8] B. Huppert, Endliche Gruppen I, Die Grundlehren der Math. Wiss., 134 Springer- Verlag, Berlin, 1968.
  • [9] G. Lewis, The integral cohomology rings of groups of order p3, Trans. Amer. Math. Soc, 132 (1968), 501-529.
  • [10] G. Lewis, Free actions on SnxSn,Trans. Amer. Math. Soc, 132 (1968), 531-540.
  • [11] C. B. Thomas, Chern classes and metacyclic p-groups, Mathematika, 18 (1971), 169-200.
  • [12] C. B. Thomas, Rieman-Roch formulae for group representation, Mathematika, 20 (1973), 253-262.
  • [13] E. A. Weiss, Kohomologiering und darstellungsringendlicher Gruppen, Bonner Math. Schurften, 36 (1969).
  • [7] E. A. Weiss,On foe Chern classes of representationsof finite groups, Trans. Amer. Math. Soc, 115 (1965), 180-193.