Pacific Journal of Mathematics

Applications of differentiation of ${\cal L}_{p}$-functions to semilattices.

P. H. Maserick

Article information

Source
Pacific J. Math., Volume 104, Number 2 (1983), 417-427.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723672

Mathematical Reviews number (MathSciNet)
MR684300

Zentralblatt MATH identifier
0501.28006

Subjects
Primary: 28B15: Set functions, measures and integrals with values in ordered spaces

Citation

Maserick, P. H. Applications of differentiation of ${\cal L}_{p}$-functions to semilattices. Pacific J. Math. 104 (1983), no. 2, 417--427. https://projecteuclid.org/euclid.pjm/1102723672


Export citation

References

  • [1] R. A. Alo, A. de Korvin, Functions of bounded variation on idempotent semigroups, Math. Ann., 194 (1971), 1-11.
  • [2] G. Birkoff, Lattice theory, Amer. Math. Soc. Colloquim Publication, 25, Providence (1948).
  • [3] S. Bochner, Finitely additive integrals, Ann. of Math., 40 (1939), 769-799.
  • [4] R. B. Darst, A decomposition of finitely additive set functions, J. fur Reine und Angerwandte Mathematik, 210 (1962), 31-67.
  • [5] N. Dunford, J. Schwartz, Linear Operators (I), New York, Interscience Publishers (1957).
  • [6] J. Kist, P. H. Maserick, BV-functions on semilattices, Pacific J. Math., (1971), 711-723.
  • [7] S. Leader, The theory of Lp-spaces for finitely additive set functions, Ann. of Math., 58 (1953), 528-543.
  • [8] P. H. Maserick, Moment and BV-functions on commutative semigroups, Trans. Amer. Math. Soc, 181 (1973), 61-75.
  • [9] P. H. Maserick, Moments of measures on convex bodies, Pacific J. Math., 68 (1977), 135-152.
  • [10] P. H. Maserick, Differentiation of tp-functionson semilattices, Kobenhavn Universitet Matematisk Institut. Preprint Series 1979 No. 12.
  • [11] P. H. Maserick, Disintegration with respect to Lp-density functions and singular measures, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 57 (1981), 311-326.
  • [12] S. E. Newman, Measure algebras and functions of bounded variation on idempotent semigroups, Trans. Amer. Math. Soc, 163 (1972), 189-205.