Pacific Journal of Mathematics

Homomorphisms of minimal flows and generalizations of weak mixing.

Douglas McMahon and Ta Sun Wu

Article information

Source
Pacific J. Math., Volume 104, Number 2 (1983), 401-416.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723671

Mathematical Reviews number (MathSciNet)
MR684299

Zentralblatt MATH identifier
0515.54028

Subjects
Primary: 54H20: Topological dynamics [See also 28Dxx, 37Bxx]

Citation

McMahon, Douglas; Wu, Ta Sun. Homomorphisms of minimal flows and generalizations of weak mixing. Pacific J. Math. 104 (1983), no. 2, 401--416. https://projecteuclid.org/euclid.pjm/1102723671


Export citation

References

  • [1] Jesse P. Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc, 108 (1963), 88-96.
  • [2] Robert Ellis, Lectures on TopologicalDynamics, Benjamin, New York, 1969.
  • [3] R. Ellis and H. B. Keynes, A characterization of the eauicontinuous structure relation, Trans. Amer. Math. Soc, 161 (1971), 171-183.
  • [4] Samuel Glasner, Relatively invariant measure, Pacific J. Math., 58 (1975), 393-417.
  • [5] Samuel Glasner, Proximal flows, Lecture Notes in Math.,Vol. 517, Springer-Verlag, Berlin and New York, 1976.
  • [6] Doug McMahon, Relativized weak disjointnessand relatively invariant measures,Trans. Amer. Math. Soc, 236 (1978), 225-237.
  • [7] Doug McMahon, Relativized weak disjointness of uncountableorder, Canad. J. Math., 32 (1980), 559-566.
  • [8] D. McMahon and T. S. Wu, On proximal and distal extensions of minimal sets, Bull. Inst. Math. Acad. Sinica, 2 (1974), no. 1, 93-107.
  • [9] W. A. Veech, Topological dynamics, Bull. Amer. Math. Soc, 83 (1977), 775-830.
  • [10] W. A. Veech, Point-distal flows, Amer. J. Math., 92 (1970), 205-242.