Pacific Journal of Mathematics

Surjective extension of the reduction operator.

Moses Glasner and Mitsuru Nakai

Article information

Source
Pacific J. Math., Volume 104, Number 2 (1983), 361-369.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723668

Mathematical Reviews number (MathSciNet)
MR684296

Zentralblatt MATH identifier
0514.30033

Subjects
Primary: 30F15: Harmonic functions on Riemann surfaces
Secondary: 31C12: Potential theory on Riemannian manifolds [See also 53C20; for Hodge theory, see 58A14] 58A10: Differential forms

Citation

Glasner, Moses; Nakai, Mitsuru. Surjective extension of the reduction operator. Pacific J. Math. 104 (1983), no. 2, 361--369. https://projecteuclid.org/euclid.pjm/1102723668


Export citation

References

  • [1] M Glasner and R. Katz, On the behavior of solutions of M = Pu at the Royden boundary, J. Analyse Math., 22 (1969), 345-354.
  • [2] M.Glasner andM.Nakai,Images of reduction operators, Archive Rat. Mech. Anal., 75 (1981), 387-406.
  • [3] M.Glasner andM.Nakai, Roles of sets of nondensity points, Israel J. Math.,36 (1980), 1-12.
  • [4] M.Nakai, Dirichletfinite solutions of w= Pu on open Riemann surfaces, Kodai Math. Sem. Rep, 23 (1971), 385-397.
  • [5] M.Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J, 50 (1973), 67-87.
  • [6] M.Nakai, Uniform densities on hyperbolic Riemann surfaces, Nagoya Math. J.,51 (1973), 1-24.
  • [7] M.Nakai, Canonical isomorphisms of energyfinite solutions of = Pu on open Riemann surfaces, Nagoya Math. I , 56 (1975), 79-84.
  • [8] M.Nakai, Extremizations and Dirichlet integrals on Riemann surfaces, J. Math. Soc. Japan, 28 (1976), 581-603.
  • [9] M.Nakai, Malformed subregions of Riemann surfaces, J. Math. Soc.Japan, 29 (1977), 779-782.
  • [10] M.Nakai,An example on canonical isomorphism, Nagoya Math. J.,20 (1978), 25-40.
  • [11] M.Nakai andS. Segawa, Tki covering surfaces and their applications, J. Math. Soc. Japan, 30 (1978), 359-373.
  • [12] I. Singer, Boundary isomorphism between Dirichlet finite solutions of u = Pu and harmonicfunctions, Nagoya Math. J., 50 (1973), 7-20,