Pacific Journal of Mathematics

Some properties of the characteristic of convexity relating to fixed point theory.

David J. Downing and Barry Turett

Article information

Source
Pacific J. Math., Volume 104, Number 2 (1983), 343-350.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723666

Mathematical Reviews number (MathSciNet)
MR684294

Zentralblatt MATH identifier
0501.47022

Subjects
Primary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]
Secondary: 46B20: Geometry and structure of normed linear spaces

Citation

Downing, David J.; Turett, Barry. Some properties of the characteristic of convexity relating to fixed point theory. Pacific J. Math. 104 (1983), no. 2, 343--350. https://projecteuclid.org/euclid.pjm/1102723666


Export citation

References

  • [1] S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., (2) 39 (1938),913-944.
  • [2] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math., 86 (1980), 427-436.
  • [3] M. M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc, 47 (1941), 504-507.
  • [4] M. M. Day, Normed Linear Spaces, 3rd Ed., Ergebnisse Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag,New York, 1973.
  • [5] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, No. 15, Amer. Math. Soc, Providence, R.I., 1977.
  • [6] D. Downing and W. Ray, Uniformly lipschitzian semigroups in ilbert space, Canad. Math. Bull., (to appear).
  • [7] K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math., 67 (1973), 135-140.
  • [8] K. Goebel, W. A. Kirk and R. L. Thele, Uniformly lipschitzian families of transforma- tions in Banach spaces, Canad. J. Math., 31 (1974), 1245-1256.
  • [9] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
  • [10] W. A. Kirk, Fixed point theory for nonexpansive mappings, Summer Workshop on Fixed Point Theory, Universitede Sherbrooke, June 1980.
  • [11] E. A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Mat. Fak., 16 (1975),23-28. (Russian)
  • [12] M. A. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc, 257 (1980), 105-118.