Pacific Journal of Mathematics

Some properties of the characteristic of convexity relating to fixed point theory.

David J. Downing and Barry Turett

Article information

Pacific J. Math., Volume 104, Number 2 (1983), 343-350.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]
Secondary: 46B20: Geometry and structure of normed linear spaces


Downing, David J.; Turett, Barry. Some properties of the characteristic of convexity relating to fixed point theory. Pacific J. Math. 104 (1983), no. 2, 343--350.

Export citation


  • [1] S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., (2) 39 (1938),913-944.
  • [2] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math., 86 (1980), 427-436.
  • [3] M. M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc, 47 (1941), 504-507.
  • [4] M. M. Day, Normed Linear Spaces, 3rd Ed., Ergebnisse Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag,New York, 1973.
  • [5] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, No. 15, Amer. Math. Soc, Providence, R.I., 1977.
  • [6] D. Downing and W. Ray, Uniformly lipschitzian semigroups in ilbert space, Canad. Math. Bull., (to appear).
  • [7] K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math., 67 (1973), 135-140.
  • [8] K. Goebel, W. A. Kirk and R. L. Thele, Uniformly lipschitzian families of transforma- tions in Banach spaces, Canad. J. Math., 31 (1974), 1245-1256.
  • [9] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
  • [10] W. A. Kirk, Fixed point theory for nonexpansive mappings, Summer Workshop on Fixed Point Theory, Universitede Sherbrooke, June 1980.
  • [11] E. A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Mat. Fak., 16 (1975),23-28. (Russian)
  • [12] M. A. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc, 257 (1980), 105-118.