Pacific Journal of Mathematics

Permutations and cubic graphs.

J. L. Brenner and R. C. Lyndon

Article information

Source
Pacific J. Math., Volume 104, Number 2 (1983), 285-315.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102723663

Mathematical Reviews number (MathSciNet)
MR684291

Zentralblatt MATH identifier
0507.05056

Subjects
Primary: 20B05: General theory for finite groups
Secondary: 05C75: Structural characterization of families of graphs 20F32

Citation

Brenner, J. L.; Lyndon, R. C. Permutations and cubic graphs. Pacific J. Math. 104 (1983), no. 2, 285--315. https://projecteuclid.org/euclid.pjm/1102723663


Export citation

References

  • [1] E. A. Bertram, Even permutations as the product of conjugate cycles, J. Combinatorial Theory, 12 (1972), 368-380.
  • [2] G. Bianchi and R. Cori, Colorings of hypermaps and a conjecture of Brenner and Lyndon, Pacific J. Math., to appear.
  • [3] G. Boccara, Sur certaines relations d'ordre dans les groupes symriques, In: Permuta- tions, actes du colloque, Paris 1972. Gauthier-Villars 1974.
  • [4] G. Boccara, Decomposition d' unepermutation d' un ensemblefini enproduit de deux cycles, Discrete Math., 23 (1978), 189-205.
  • [5] G. Boccara, Sur les permutations d'un ensemble infini denombrable dont toute orbite es- sentielle est infini, C. R. Acad. Sci. Paris, 287 (1978), A 281-283.
  • [6] G. Boccara, Nombre de representations d 'unepermutation commeproduit de deux cycles de longeurs donnees, Discrete Math., 29 (1980), 105-134.
  • [7] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier, 1976.
  • [8] J. L. Brenner, Elementary problem E 1118, Amer. Math. Monthly, 62 (1955), 43.
  • [9] J. L. Brenner, A new proof that no permutation is both even and odd, Amer. Math. Monthly, 64 (1957), 499-450.
  • [10] J. L. Brenner and R. C. Lyndon, Nonparabolic subgroups of the modular group, J. Algebra, 77 (1982), 311-321.
  • [11] J. L. Brenner and R. C. Lyndon, Maximal nonparabolic subgroups of the modular group, Math. Annalen, to appear.
  • [12] J. L. Brenner and R. C. Lyndon, The orbits of the product of two permutations, European J. Combinatorics, to appear.
  • [13] J. L. Brenner and R. C. Lyndon, Infinite Eulerian tessellations, Discrete Math., to appear.
  • [14] J. L. Brenner and R. C. Lyndon, Complements to a theorem of G.A. Miller on permutations, I, II, III, submitted.
  • [15] J. L. Brenner and J. Riddell, Noncanonical factorization of a permutation, Amer. Math. Monthly, 84 (1977), 39-40.
  • [16] M. D. E. Conder, Generators for alternating and symmetric groups, J. London Math. Soc, 22 (1980), 75-86.
  • [17] M. D. E. Conder, More on generators for alternating and symmetric groups, Quart. J. Math. Oxford, 32 (1981), 137-163.
  • [18] R. Cori, Un codepour les graphes planaires et ses applications, Asterisque, 27 (1975), 169 pp.
  • [19] R. Cori and B. Vauquelin,Planar maps are well labeled trees, Laboratoire associe au C. N. R. S. 226, Univ. de Bordeaux, Number 7907 (1979).
  • [20] R. Cori, A. Machi, J. G. Penaud and B. Vauquelin, On the automorphism group of a planar hypermap, Laboratoire associe au C. N. R. S. 226, Univ. de Bordeaux, Number 8003 (1980).
  • [21] W. Feit, R. Lyndon and L. L. Scott, A remark about permutations, J. Combinatorial Theory, Ser. A, 18 (1975), 234-236.
  • [22] F. Harary, Theory of Graphs, Addison-Wesley, 1969.
  • [23] M. Herzog, and K. B. Reid, Number of factors in k-cycle decompositions of permuta- tions, Springer Lecture Notes in Math., 560 (1976) 123-131.
  • [24] M. Herzog, Permutation groups generated by cycles of fixed length, Israel J. Math., 26 (1977), 221-231.
  • [25] D. H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math.J., 29 (1962), 167-174.
  • [26] W. Imrich, Subgroup theorems and graphs, Proc. Fifth Austral. Conference on Combinatorial Math. Springer Lecture Notes in Math 562.
  • [27] A. Jacques, C. Lenormand, A. Lentin and J-F. Perrot, Un resultat extremal en theorie des permutations, C. R. Acad. Sci. Paris, 266 (1978), A 446-448.
  • [28] G. A. Jones,Triangular maps and non-congruence subgroups of the modulargroup, Bull. London Math. Soc, 11 (1979), 117-123.
  • [29] C. Jordan, Traite des Substitutions, Paris, Gauthier-Villars, 1870.
  • [30] W. Magnus, Noneuclidean Tesselations and Their Groups, Academic Press,1974.
  • [31] G. A. Miller, On theproduct of two substitutions, Amer. J. Math., 22 (1900), 185-190.
  • [32] G. A. Miller, Groups defined by the order of two generators and the order of their product, Amer. J. Math., 24 (1902), 96-100.
  • [33] B. H. Neumann, Uber ein gruppentheoretisch-arithmetisches Problem, Sitzungsber. Preuss. Akad. Wiss. Phys. Math., Kl. No.X (1933).
  • [34] E. B. Rabinovi and V. Z. Fenberg, Normal divisors of a 2-transitive group of automorphisms of a linearlyorderedset, Mat.Sbornik, 93 (135)(1974); transl: Math. USSR Sbornik, 22 (1974), 187-200.
  • [35] R. Ree, A theorem on permutations, J. Combinatorial Theory, Ser. A, 10 (1971), 174-175.
  • [36] L. L. Scott, Matrices and cohomology,Ann. Math., 105 (1977), 473-492.
  • [37] W. W. Stothers, Subgroups of the modular group, Proc. Camb. Phil. Soc, 75 (1974), 139-153.
  • [38] W. W. Stothers, Subgroups of the (2,3,7) triangle group, Manuscripta Math., 20 (1977), 323-334.
  • [39] W. W. Stothers, Subgroups of infinite index in the modulargroup, Glasgow Math.J., 19 (1978), 33-43.
  • [40] W. W. Stothers, Diagrams associatedwith subgroups of Fuchsiangroups, Glasgow Math. J.,20 (1979), 103-114.
  • [41] W. W. Stothers, Subgroups of infinite index in the modular group. II, Glasgow Math. J., 22 (1981), 101-118.
  • [42] W. W. Stothers, Subgroups of infinite index in the modular group. Ill, Glasgow Math. J., 22 (1981), 119-131.
  • [43] W. W. Stothers, Groups of the second kind within the modular group, Illinois J. Math., 25 (1981), 390-397.
  • [44] C. Tretkoff, Non-parabolicsubgroups of the modular group, Glasgow Math. J., 16 (1975), 91-102.