Pacific Journal of Mathematics

Annihilator alternative algebras.

I. P. de Guzman

Article information

Source
Pacific J. Math., Volume 107, Number 1 (1983), 89-94.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720740

Mathematical Reviews number (MathSciNet)
MR701809

Zentralblatt MATH identifier
0506.46036

Subjects
Primary: 17D05: Alternative rings
Secondary: 46H20: Structure, classification of topological algebras

Citation

de Guzman, I. P. Annihilator alternative algebras. Pacific J. Math. 107 (1983), no. 1, 89--94. https://projecteuclid.org/euclid.pjm/1102720740


Export citation

References

  • [1] F. F. Bonsall, and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, Heidelberg, New York, (1973).
  • [2] F. F. Bonsall, and A. W. Goldie, Annihilator algebras, Proc. London Math. So, (3) 4, (1954), 154-167.
  • [3] R. H. Bruck, and E. Kleinfeld, The structure of alternative division rings, Proc. Am. Math. Soc, 2 (1951), 878-890.
  • [4] E. Kleinfeld, Primitive alternative rings and semisimplicty, Amer. J. Math., 77 (1955), 725-730.
  • [5] R. D. Schafer, An Introduction to Non Associative Algebras, Academic Press, New York, San Francisco, London (1966).
  • [6] M. Slater, Nucleus and center in alternative rings, J. Algebra, 7 (1967), 372-388.
  • [7] M. Slater, Ideals in semiprime alternative rings, J. Algebra, 8 (1968), 60-76.
  • [8] M. Slater, The open casefor simple alternative rings, Proc. Amer. Math. Soc, 19 (1968), 712-715.