Pacific Journal of Mathematics

A generalization of the Gleason-Kahane-Żelazko theorem.

Chang P'ao Ch'ên

Article information

Source
Pacific J. Math., Volume 107, Number 1 (1983), 81-87.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720739

Mathematical Reviews number (MathSciNet)
MR701808

Zentralblatt MATH identifier
0536.46039

Subjects
Primary: 46J20: Ideals, maximal ideals, boundaries

Citation

Ch'ên, Chang P'ao. A generalization of the Gleason-Kahane-Żelazko theorem. Pacific J. Math. 107 (1983), no. 1, 81--87. https://projecteuclid.org/euclid.pjm/1102720739


Export citation

References

  • [I] J. Cigler, Normed ideals in L\G), Nederl. Akad. Wetensch. Indag. Math., 31 (1969), 273-282.
  • [2] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972.
  • [3] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
  • [4] R. E. Edwards, Fourier Series, a Modern Introduction, 2 Vols. New York, N. Y.: Holt, Rinehart and Winston, Inc. 1967.
  • [5] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171-172.
  • [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin, 1963.
  • [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer-Verlag, Berlin, 1970.
  • [8] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
  • [9] J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math., 29 (1968), 339-343.
  • [10] Y. Katznelson, An Introduction to Harmonic Analysis, New York, 1968.
  • [II] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford, 1968.
  • [12] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
  • [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Prince- ton, 1970.
  • [14] H. C. Wang, Homogeneous Banach Algebras, Lecture Notes in Pure and Appl. Mathematics, Dekker, New York, 1977.
  • [15] C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math., 30 (1969), 277-281.
  • [16] C. R. Warner and R. Whitley, Ideals of finite codimension in C[0,1] and L\R),Proc. Amer. Math. Soc, 76 (1979), 263-267.