Pacific Journal of Mathematics

Localizations of torsion theories.

Erol Barbut and Willy Brandal

Article information

Source
Pacific J. Math., Volume 107, Number 1 (1983), 27-37.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720736

Mathematical Reviews number (MathSciNet)
MR701805

Zentralblatt MATH identifier
0507.13007

Subjects
Primary: 13G05: Integral domains
Secondary: 13D30: Torsion theory [See also 13C12, 18E40] 16A63 18E40: Torsion theories, radicals [See also 13D30, 16S90]

Citation

Brandal, Willy; Barbut, Erol. Localizations of torsion theories. Pacific J. Math. 107 (1983), no. 1, 27--37. https://projecteuclid.org/euclid.pjm/1102720736


Export citation

References

  • [1] W. Brandal, Almost maximal integral domains and finitely generated modules, Trans. Amer. Math. Soc, 183 (1973), 203-222.
  • [2] W. Brandal, On h-local integral domains, Trans. Amer. Math. Soc, 206 (1975), 201-212.
  • [3] W. Brandal, Constructing Bezout domains, Rocky Mountain Math. J., 6 (1976), 383-399.
  • [4] W. Brandal, Commutative rings whosefinitely generated modules decompose, Lecture Notes in Mathematics, v. 723, Springer-Verlag, Berlin, 1979.
  • [5] W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc, 158 (1971), 273-284.
  • [6] E. Math's, Cotorsion Modules, Mem. Amer. Math. Soc, No. 49, 1964.
  • [7] E. Math's, Decomposable modules, Trans. Amer. Math. Soc, 125 (1966), 147-179.
  • [8] E. Math's, Torsion-free modules, Chicago Lectures in Mathematics, 1972, University of Chicago Press, Chicago.
  • [9] B. Stenstrm, Rings of Quotients, Die Grundlehren der mathematischen Wissenschaf- ten, v. 217, 1975, Springer-Verlag, Berlin.
  • [10] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand Co., Prince- ton, N. J., 1960.