Pacific Journal of Mathematics

The Banach space $JT$ is primary.

A. D. Andrew

Article information

Source
Pacific J. Math., Volume 108, Number 1 (1983), 9-17.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720468

Mathematical Reviews number (MathSciNet)
MR709696

Zentralblatt MATH identifier
0535.46011

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces

Citation

Andrew, A. D. The Banach space $JT$ is primary. Pacific J. Math. 108 (1983), no. 1, 9--17. https://projecteuclid.org/euclid.pjm/1102720468


Export citation

References

  • [I] D. Alspach and Y. Benyamini, Primariness of spaces of continuous functions on ordinals, Israel J. Math., 27 (1977), 64-92.
  • [2] D. Alspach, P. Enflo, and E. Odell, On the structure of separable tp spaces (1 < p < oo), Studia Math., 60 (1977), 79-90.
  • [3] P. G. Casazza, James' quasi-reflexive space is primary, Israel J. Math., 26 (1977), 294-305.
  • [4] P. G. Casazza and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math., 52 (1974), 189-193.
  • [5] P. G. Casazza, C. A. Kottman, and B. L. Lin, On some classes of primary Banach spaces, Canad. J. Math., 29 (1977), 856-873.
  • [6] R. C. James, Bases and reflexivity of Banach spaces, Ann. Math., 52 (1951), 518-527.
  • [7] R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci.USA, 37(1951), 174-177.
  • [8] R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc, 80 (1974), 738-743.
  • [9] J. Lindenstrauss, On complemented subspaces of m, Israel J. Math., 5 (1967), 153-156.
  • [10] J. Lindenstrauss and A. Pelczynski, Contributions to the theory of classical Banach spaces, J. Functional Anal., 8 (1971), 225-249.
  • [II] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain lx and whose duals are non-separable, Studia Math., 54 (1975), 81-105.
  • [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, New York, 1977.
  • [13] A. Pelczynski, Projections in certain Banach spaces, Studia Math., 19 (1960), 209-228.