Pacific Journal of Mathematics

Sectional representations of Banach modules.

J. W. Kitchen and D. A. Robbins

Article information

Pacific J. Math., Volume 109, Number 1 (1983), 135-156.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46H25: Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
Secondary: 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx]


Kitchen, J. W.; Robbins, D. A. Sectional representations of Banach modules. Pacific J. Math. 109 (1983), no. 1, 135--156.

Export citation


  • [1] E. Coddington, Some Banach algebras, Proc. Amer. Math. Soc. 8 (1957), 258-261.
  • [2] M. J. Dupre, The classification and structure of C*-algebra bundles, Mem. Amer. Math. Soc, No. 222(1979).
  • [3] M. J. Dupre, Duality for C*-algebras,Mathematical foundations of quantum theory (Proc. Conf. Loyola Univ., New Orleans, La.) 329-338. Academic Press, New York, 1978.
  • [4] J. M. G. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961), 233-280.
  • [5] W. A. Greene,Ambrose modules, Mem. Amer. Math. Soc, No. 148 (1974), 109-133.
  • [6] K. H. Hofmann, Sheaves and bundles of Banach spaces,(preprint).
  • [7] J. W. Kitchen and D. A. Robbins, Gelfand representation of Banach modules, Dissertationes Math. (Rozprawy Mat.) (to appear).
  • [8] J. W. Kitchen and D. A. Robbins, Tensor products of Banach bundles, Pacific J. Math., 94 (1981), 151-169.
  • [9] A. Takahashi, Hilbert modules and their representation, Rev. Colombiana Mat., 13 (1979), 1-38.
  • [10] A. Takahashi, A duality betwen Hilbert modules and fields of Hilbert spaces, Rev. Col- ombiana Mat., 13 (1979), 93-120.