Pacific Journal of Mathematics

An interpolation theorem for $H^\infty_E$.

Knut Øyma

Article information

Source
Pacific J. Math., Volume 109, Number 2 (1983), 457-462.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720113

Mathematical Reviews number (MathSciNet)
MR721933

Zentralblatt MATH identifier
0521.30035

Subjects
Primary: 30E05: Moment problems, interpolation problems
Secondary: 30D50 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]

Citation

Øyma, Knut. An interpolation theorem for $H^\infty_E$. Pacific J. Math. 109 (1983), no. 2, 457--462. https://projecteuclid.org/euclid.pjm/1102720113


Export citation

References

  • [I] W. G. Bade and P. C. Curtis, Jr. Embedding theorems for commutative Banach algebras, Pacific J. Math., 18 (1966), 391-409.
  • [2] L. Carleson, An interpolationproblem for bounded analytic functions, Amer. J. Math., 80(1958), 921-930.
  • [3] L. Carleson, Representations of continuousfunctions, Math. Z., 66 (1957), 447-451.
  • [4] P. L. Duren, Theory of Hp Spaces, Academic Press.
  • [5] J. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. So, 2 (1970), 544-548.
  • [6] E. A. Heard and J. H. Wells, An interpolation problem for subalgebras of H00, Pacific J. Math., 28 No. 3 (1969), 543-553.
  • [7] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.
  • [8] W. Rudin, Boundary values of continuousfunctions, P.A.M.S., 7 (1956).
  • [9] W. Rudin, Functional Analysis, McGraw-Hill Book Company.
  • [10] H. S. Shapiro and A. L. Shields, On some interpolationproblems for analytic functions, Amer. J. Math., 83 (1961), 513-532.
  • [II] S. A. Vinogradov, The Banach-Rudin-Carleson Theorems and Embedding Operators, Seminars in Math. V. A. Steklov Math. Inst. Leningrad, Vol. 19, 1-28. Consultants Bureau New York-London (1972).