Pacific Journal of Mathematics

Locally convex spaces of non-Archimedean valued continuous functions.

Willy Govaerts

Article information

Source
Pacific J. Math., Volume 109, Number 2 (1983), 399-410.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720109

Mathematical Reviews number (MathSciNet)
MR721929

Zentralblatt MATH identifier
0524.46052

Subjects
Primary: 46P05
Secondary: 46E10: Topological linear spaces of continuous, differentiable or analytic functions

Citation

Govaerts, Willy. Locally convex spaces of non-Archimedean valued continuous functions. Pacific J. Math. 109 (1983), no. 2, 399--410. https://projecteuclid.org/euclid.pjm/1102720109


Export citation

References

  • [1] G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topologicalfield, Trans. Amer. Math. Soc, 204 (1975), 91-112.
  • [2] N. Bourbaki, Elements de mathematique, Livre V, Espaces vectoriels topologiques.
  • [3] N. De Grande-De Kimpe, c-Compactness in locally K-conex spaces, Proc. Kon. Ned. Akad. Wet., A 74 (1971), 176-180.
  • [4] R. L. Ellis, Topological vector spaces over non-Archimedeanfields, Ph.D. Dissertation, Duke University,N.C.1966.
  • [5] W. Govaerts, Bornological spaces of non-Archimedean valued functions with the point-open-topology,Proc. Amer. Math. So,72 (1978),571-575.
  • [6] W. Govaerts, Bornological spaces of non-Archimedean valuedfunctions with the compact-open topology, Proc. Amer. Math. So, 78 (1980), 132-134.
  • [7] W. Govaerts, Sequentially continuous linearfunctionals on spaces of continuousfunctions, (to appear).
  • [8] L. Gruson, Theorie de Fredholm p-adique, Bull. Soc. Math, de France, 94 (1966), 67-95.
  • [9] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acad. U.S.A., 40 (1954),471-474.
  • [10] J. Schmets, Espaces de Functions Continues, Lecture Notes in Mathematics 519, Springer-Verlag, Berlin, 1976.
  • [11] A. C. M. Von Rooij, Non-Archimedean Functional Analysis, Marcel Dekker Inc., New York, 1978.
  • [12] J. Van Tiel, Espaces localement K-convexes I-III, Proc. Kon. Ned. Akad. Wet., 68 (1965), 249-258; 259-272; 273-289.
  • [13] S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. 1,25(1958), 265-282.