Pacific Journal of Mathematics

Cyclic groups of automorphisms of compact nonorientable Klein surfaces without boundary.

Emilio Bujalance

Article information

Source
Pacific J. Math., Volume 109, Number 2 (1983), 279-289.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102720100

Mathematical Reviews number (MathSciNet)
MR721920

Zentralblatt MATH identifier
0545.30033

Subjects
Primary: 30F35: Fuchsian groups and automorphic functions [See also 11Fxx, 20H10, 22E40, 32Gxx, 32Nxx]
Secondary: 14H99: None of the above, but in this section 20B25: Finite automorphism groups of algebraic, geometric, or combinatorial structures [See also 05Bxx, 12F10, 20G40, 20H30, 51-XX]

Citation

Bujalance, Emilio. Cyclic groups of automorphisms of compact nonorientable Klein surfaces without boundary. Pacific J. Math. 109 (1983), no. 2, 279--289. https://projecteuclid.org/euclid.pjm/1102720100


Export citation

References

  • [1] N. L. Ailing, and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes 219, Springer-Verlag (1971).
  • [2] E. Bujalance, Normal subgroups of NEC group, Math. Z., 178 (1981), 331-341.
  • [3] E. Bujalance, Proper periods of normal NEC subgroups with even index, to appear in Revista Hispano-Americana.
  • [4] W. Hall, Automorphisms and coverings of Klein surfaces, Ph.D. Thesis, Southampton (1978).
  • [5] W. J. Harwey, Cyclic groups of automorphisms of compact Riemann surfaces, Quart J. Math. Oxford, (2) 17 (1966), 86-97.
  • [6] C. L. May, Cyclic groups of automorphisms of compact bordered Klein surfaces, Houston J. Math.,3, no. 3 (1977), 395-405.
  • [7] C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math., 59 (1975), 199-210.
  • [8] D. Singerman, Automorphisms of compact non-orientableRiemann surface, GlasgowJ. Math., 12(1971), 50-59.
  • [9] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Camb. Phil. Soc, 76(1974), 223-240.
  • [10] A. Wiman, Ueber die hyperelliptischen Curen und diejenigen om Geschlechte p ~ 3, welche eindeutigen Transformationen in sich zulassen. Bihan Kongl Svenska Veten- skans-Akademiens Handlingar (Stockholm 1895-6).