Pacific Journal of Mathematics

Permanence properties of normal structure.

Thomas Landes

Article information

Source
Pacific J. Math., Volume 110, Number 1 (1984), 125-143.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102711103

Mathematical Reviews number (MathSciNet)
MR722744

Zentralblatt MATH identifier
0534.46015

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces
Secondary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

Citation

Landes, Thomas. Permanence properties of normal structure. Pacific J. Math. 110 (1984), no. 1, 125--143. https://projecteuclid.org/euclid.pjm/1102711103


Export citation

References

  • [1] J. P. Baillon and R. Schneberg, Asymptotic normal structure and fixed points of nonexpansie maps, Proc. Amer. Math. Soc, 81 (1981), 257-264.
  • [2] L. P. Belluce and W. A. Kirk, Fixed point theorems for families of contraction mappings, Pacific J. Math.,18 (1966), 213-217.
  • [3] L. P. Belluce and W. A. Kirk, Nonexpansie mappings and fixed points in Banach spaces, Illinois J. Math., 11 (1967), 474-479.
  • [4] L. P. Belluce, W. A. Kirk and E. F. Steiner, Normal structure in Banach spaces, Pacific J. Math., 26 (1968),433-440.
  • [5] M. S. Brodskii and D. P. Miman, On the center of a convex set, Dokl. Akad. Nauk SSSR, 59 (1948), 837-840 (Russian).
  • [6] F. E. Browder, Nonlinear mappings of nonexpansie and accretive type in Banach spaces, Bull. Amer. Math. Soc, 73 (1967),875-881.
  • [7] F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc.,74 (1968),660-665.
  • [8] W. L. Bynum, A class of spaces lacking normal structure, Compositio Math., 25 (1972), 233-236.
  • [9] W. L. Bynum, Normal structure of Banach spaces, Manuscripta Math.,11(1974), 203-209.
  • [10] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math., 86 (1980), 427-436.
  • [11] M. M. Day, Strict convexity and smoothness, Trans. Amer. Math. Soc, 78 (1955), 516-528.
  • [12] M. M. Day, Every L-space is isomorphic to a strictly convex space, Proc. Amer. Math. Soc, 8 (1957),415-417.
  • [13] M. M. Day, R. C. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math., 23 (1971), 1051-1059.
  • [14] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math., 13 (1963),1139-1141.
  • [15] J. Diestel, Geometry of Banach Spaces-Selected Topics, Springer, Berlin Heidelberg New York (1975).
  • [16] D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces, preprint.
  • [17] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math., 13 (1972),281-288.
  • [18] B. Fuchssteiner, Iterations andfixpoints, Pacific J. Math., 68 (1977),73-79.
  • [19] A. L. Garkavi, On the Cebysev center of a set in a normed space, Investigations of contemporary problems in the constructive theory of functions, Moscow, (1961), 328-331.
  • [20] A. A. Gillespie and B. B. Williams, Fixed point theorem for non-expansive mappings on Banach spaces with uniformly normal structure, Appl. Anal., 9 (1979), 121-124.
  • [21] K. Goebel, An elementary proof of the fixed point theorem of Browder and Kirk, Michigan Math. J.,16 (1969),381-383.
  • [22] D. Ghde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30 (1965), 251-258.
  • [23] J. P. Gossez and E. Lami Dozo, Structure normale et base de Schauder, Bull, de l'Acad. royale de Belgique,(5) 15 (1969), 673-681.
  • [24] J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40 (1972),565-573.
  • [25] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math., 10 (1980),743-749.
  • [26] R. C. James, Characterizations of reflexivity, Stud. Math., 23 (1964),205-216.
  • [27] W. A. Kirk,A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
  • [28] W. A. Kirk, Nonexpansive mappings and normal structure in Banach spaces, Proc Conf. on Geom. of Banach spaces, Univ. of Iowa, (July 1981).
  • [29] W. A. Kirk, Nonexpansive mappings in metric and Banach spaces, Rend. Seminario Mat. e Fis. Milano, (to appear).
  • [30] T. Landes, Das Iterationstheorem und Fixpunktstze bei normaler Struktur, Disserta- tion, Paderborn 1981.
  • [31] T. Landes, A characterization of totally normal structure, Arch. Math., 37 (1981), 248-255.
  • [32] T. C. Lim, A fixed point theorem for families of nonexpansie mappings, Pacific J. Math., 53 (1974), 487-493.
  • [33] T. C. Lim, Characterizations of normal structure, Proc. Amer. Math. So, 43 (1974), 313-319.
  • [34] E. Maluta, Characterization of normal type structure by means of sequences, 1st. Lombardo Accad. Sci. Lett. Rend. A 113 (1979), 436-441.
  • [35] J. R. Partington, Equivalent norms on spaces of boundedfuctions, Israel J. Math., 35 (1980), 205-209.
  • [36] J. R. Partington, Subspaces of certain Banach sequence spaces, Bull. London Math. So, 13 (1981), 162-166.
  • [37] J. Rainwater, Local uniform convexity of Day's norm on co(), Proc. Amer. Math. Soc, 22 (1969),335-339.
  • [38] R. Schoneberg, Fixpunktstze fur einige Klassen kontraktionsartiger Abbildungen in Banachrumen iiber einen Fixpunktindex, eine Zentrummethode und die Fixpunkt- theorie nichtexpansiver Abbildungen, Dissertation, Aachen 1977.
  • [39] P. Soardi, Schauder bases andfixed points of nonexpansive mappings, Pacific J. Math., (to appear).
  • [40] F. Sullivan,A generalization of uniformly rotund Banach spaces, Canad. J. Math., 31 (1979), 628-636.
  • [41] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Diss. Math. Rozprawy Mat.,87 (1971), 1-37.