Pacific Journal of Mathematics

On localizations and simple $C^{\ast}$-algebras.

Alexander Kumjian

Article information

Source
Pacific J. Math., Volume 112, Number 1 (1984), 141-192.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102710106

Mathematical Reviews number (MathSciNet)
MR739145

Zentralblatt MATH identifier
0574.46046

Subjects
Primary: 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]
Secondary: 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx] 58H05: Pseudogroups and differentiable groupoids [See also 22A22, 22E65]

Citation

Kumjian, Alexander. On localizations and simple $C^{\ast}$-algebras. Pacific J. Math. 112 (1984), no. 1, 141--192. https://projecteuclid.org/euclid.pjm/1102710106


Export citation

References

  • [1] C. A. Akemann, Approximate units and maximal Abelian C*-subalgebras, Pacific J. Math., 33 (1970), 543-550.
  • [2] C. A. Akemann, Left ideal structure of C*-algebras, J. Func. Anal., 6 (1970), 305-317.
  • [3] W. B. Arveson, An invitation to C*-Algebras, Graduate texts in mathematics, Vol. 39 (Springer-Verlag, 1976).
  • [4] W. B. Arveson, Notes on extensions of C*-Algebras,Duke Math. J., 44 (1977), 329-355.
  • [5] B. Barnes, Representations of the V-algebraof an Inverse Semigroup, Trans. Amer. Math. Soc, 218 (1976), 361-395.
  • [6] B. Blackadar, A simple C*-Algebrawith no non-trivial projections, Proc. Amer. Math. Soc, (to appear).
  • [7] O. BratelM, Inductive limits of finite-dimensional C*-algebras, Trans. Amer. Math. Soc, 171 (1972), 195-234.
  • [8] J. R. Brown, Ergodic Theory and Topological Dynamics, (Academic Press, 1964).
  • [9] L. G. Brown, Stable Isomorphism of Hereditary Subalgebras of C*-Algebras, Pacific J. Math, 71 (1977), 335-348.
  • [10] L. G. Brown, P. Green and M. A. Rieffel, Stable Isomorphism and Strong Morita Equivalence of C*-Algebras, Pacific J. Math., 71 (1977), 349-363.
  • [11] J. Cuntz, Dimension functions on simple C*-algebras\ Math. Ann., 233 (1978), 145-153.
  • [12] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys., 57 (1977), 173-185.
  • [13] J. Cuntz and W. Krieger, A Class of C*-Algebras and Topological Markov Chains, (1979) Heidelberg Preprint.
  • [14] J. Cuntz and G. K. Pedersen, Equivalence and traces on C*-algebras, Copenhagen Preprint 1978.
  • [15] J. Dixmier, On some C*-algebras considered by Glimm, J. Func. Anal., 1 (1967), 182-203.
  • [16] J. Dixmier, C*-AIgebras, North-Holland (1977).
  • [17] R. Douglas, On the C*-algebras of a one-parameter semigroup of isometries, Acta Math., 128(1972), 143-151.
  • [18] E. G. Effros, Order ideals in a C*-algebra, Duke Math. J, 30 (1963), 391-412.
  • [19] E. G. Effros, C.B.M.S. notes (untitled, in preparation).
  • [20] E. G. Effros and F. Hahn, locally compact transformation groups and C*-Algebras, Memoirs Amer. Math. Soc, 75 (1967).
  • [21] E. G. Effros and C.-L. Shen, Approximately finite C'-algebras and continued frac- tions, Indiana J. Math., (to appear).
  • [22] G. A. Elliott, On the classification of inductive limits of sequences of semi-simple finite-dimensional algebras, J. Algebra, 38 (1976), 29-44.
  • [23] G. A. Elliott, On totally ordered groups, Copenhagen preprint 1978.
  • [24] G. A. Elliott, Automorphisms determined by multipliers on ideals of a C*-algebra, J. Func. Anal., 23 (1976), 1-10.
  • [25] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras, I and II, Trans. Amer. Math. Soc, 234 (1977), 289-359.
  • [26] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc, 95 (1960), 318-340.
  • [27] P. Green, C*-Algebras of Transformation Groups with Smooth Orbit Space, Pacific J. Math., 72 (1977), 71-97.
  • [28] K. H. Hofmann and F. J. Thayer, Approximately finite dimensional C*-algebras, Tulane University preprint (1976).
  • [29] J. L. Kelley, General Topology, (Van Nostrand 1963).
  • [30] W. Krieger, On a dimension for a class of homeomorphism groups, preprint (1977).
  • [31] D. P. O'Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc, 208(1975), 1-25.
  • [32] D. Olesen, Inner * automorphisms of simple C*-algebras, Comm. Math. Phys., 44 (1975), 175-190.
  • [33] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press 1979.
  • [34] G. K. Pedersen, The linear space of projections in simple C*-algebras, Copenhagen preprint (1980).
  • [35] N. V. Pedersen, On certain KMS-weights on C* crossed products, Copenhagen preprint (1979).
  • [36] K. Petersen and L. Shapiro, Induced flows, Trans. Amer. Math. Soc, 177 (1973), 375-390.
  • [37] M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra, preprint.
  • [38] S. C. Power, Simplicity of C*-algebras of minimal dynamical systems, J. London Math. Soc, 18 (1978), 534-538.
  • [39] J. Renault, A Groupoid Approach to C*-Algebras, Ph.D. Thesis, U. C. Berkeley (1978), (Springer Lecture Notes #793 (1980)).
  • [40] M. A. Rieffel, On the uniqueness of the Heisenberg commutation relatinos, Duke Math. 1,39 (1972), 745-752.
  • [41] M. A. Rieffel, Induced representations of C*-algebras,Advances Math., 13 (1974), 176-257.
  • [42] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure and Applied Algebra, 5 (1974), 51-96.
  • [43] M. A. Rieffel, Strong Morita equivalence of certain transformation group C*-algebras, Math. Ann., 222 (1976), 7-22.
  • [44] M. A. Rieffel, C*-algebras associated with irrational rotations, preprint.
  • [45] W. Rudin, Real and Complex Analysis, (McGraw-Hill 1966).
  • [46] S. Stratila and D. Voiculescu, Representations of A F-Algebras and of the Group /(oo), Lecture Notes in Mathematics No. 486, (Springer-Verlag, 1975).
  • [47] H. Takai, On a duality for crossedproducts of C*-algebras,J. Func. Anal., 19 (1975), 24-39.