Pacific Journal of Mathematics

de Rham theorem with cubical forms.

Bohumil Cenkl and Richard Porter

Article information

Source
Pacific J. Math., Volume 112, Number 1 (1984), 35-48.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102710096

Mathematical Reviews number (MathSciNet)
MR739139

Zentralblatt MATH identifier
0551.55008

Subjects
Primary: 55N10: Singular theory
Secondary: 55U15: Chain complexes 58A12: de Rham theory [See also 14Fxx] 58C35: Integration on manifolds; measures on manifolds [See also 28Cxx]

Citation

Cenkl, Bohumil; Porter, Richard. de Rham theorem with cubical forms. Pacific J. Math. 112 (1984), no. 1, 35--48. https://projecteuclid.org/euclid.pjm/1102710096


Export citation

References

  • [I] H. Cartan, Theorie cohomologiques,Inventiones Math.,35 (1976), 261-271.
  • [2] B. Cenkl and R. Porter, Completion de hazard des groupes par des formes dif- ferentielles, C.R. Acad. Sc. Paris, 288 (1979), Serie A, 445-447.
  • [3] B. Cenkl and R. Porter, Differential forms and torsion in the fundamental group, Advances in Math., 48(1983), 189-204.
  • [4] B. Cenkl and R. Porter, Modeles pour la theorie de homotopie moderee, C.R. Acad. Sc. Paris, 290 (1980), Serie A, 613-615.
  • [5] B. Cenkl and R. Porter, Tame homotopy; Colecao Atas (Sociedade Brasileira De Mathematica Segundo Encontro Brasileiro De Topologia), 13 (1980), 1-32.
  • [6] B. Cenkl and R. Porter, Algebraic categories and homotopy theory, to appear in the proceedings of the conference on homotopy theory held in Luminy, June 1982.
  • [7] W. G. Dwyer, Tame homotopy theory, Topology, 18 (1979), 321-338.
  • [8] S. Eilenberg and S. MacLane,Acyclic Models, Amer. J. Math., 75 (1953), 189-199.
  • [9] S. Halperin and J. Stasheff, Obstructions to homotopy equivalence, Advances in Math., 32 (1979), 233-279.
  • [10] L. Lambe and S. Priddy, Cohomology of nilmanifolds and torsion-free, nilpotent groups, (preprint 1982).
  • [II] E. Y. Miller, deRham cohomology with arbitrary coefficients, Topology, 17 (1978), 193-203.
  • [12] M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, I.H.E.S. (preprint).
  • [13] J. P. Serre, Homologie singuliere des espacesfibres, applications, Annals of Math., 54 (1951), 425-505.
  • [14] D. Sullivan, Infinitesimal computations in topology, Pub. Math. I.H.E.S., 47 (1978), 269-332.