Pacific Journal of Mathematics

Characterizing the divided difference weights for extended complete Tchebycheff systems.

R. B. Barrar and H. L. Loeb

Article information

Source
Pacific J. Math., Volume 112, Number 1 (1984), 1-9.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102710091

Mathematical Reviews number (MathSciNet)
MR739136

Zentralblatt MATH identifier
0536.41028

Subjects
Primary: 65D05: Interpolation

Citation

Barrar, R. B.; Loeb, H. L. Characterizing the divided difference weights for extended complete Tchebycheff systems. Pacific J. Math. 112 (1984), no. 1, 1--9. https://projecteuclid.org/euclid.pjm/1102710091


Export citation

References

  • [1] R. B. Barrar and H. L. Loeb, On monosplines of odd multiplicity of least norm, J. Analyse Math.,33 (1978), 12-38.
  • [2] R. B. Barrar, H. L. Loeb and H. Werner, On the uniqueness of the best uniform extended totallypositive monospline, J. Approx. Theory, 28 (1980), 20-29.
  • [3] R. B. Barrar and H. L. Loeb, Oscillating Tchebycheff systems, J. Approx. Theory, 31 (1981), 188-197.
  • [4] C. H. Fitzgerald and L. L. Schumaker, A differential equation approach to interpolation at extremal points, J. Analyse Math., 22 (1969), 117-134.
  • [5] S. Karlin and W. S. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience,New York, 1966.
  • [6] S. Karlin, Total Positiity, Stanford University Press, Stanford, 1968.
  • [7] D. J. Newman and T. J. Rivlin, A characterization of the weights in a divided difference, Pacific J. Math., 93 (1981), 407-413.