Pacific Journal of Mathematics

Derivations of quasitriangular algebras.

Bruce H. Wagner

Article information

Source
Pacific J. Math., Volume 114, Number 1 (1984), 243-255.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708982

Mathematical Reviews number (MathSciNet)
MR755493

Zentralblatt MATH identifier
0587.47050

Subjects
Primary: 47D25
Secondary: 46L40: Automorphisms 47A15: Invariant subspaces [See also 47A46]

Citation

Wagner, Bruce H. Derivations of quasitriangular algebras. Pacific J. Math. 114 (1984), no. 1, 243--255. https://projecteuclid.org/euclid.pjm/1102708982


Export citation

References

  • [1] N.T.Andersen, Compact perturbations of reflexive algebras, J. Functional Analysis, 38 (1980), 366-400.
  • [2] W. B. Arveson, Interpolation problems in nest algebras, J. Functional Analysis, 20 (1975), 208-233.
  • [3] E.Christensen, Derivations of nest algebras, Math. Ann., 229(1977), 155-161.
  • [4] E. Christensen and C. Peligrad, Commutants of nest algebras modulo the compact operators, Kobenhavns Universitet Matematisk Institut Preprint Series #31, Nov. 1978.
  • [5] K. R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J.,27 (1978), 479-490.
  • [6] K. R. Davidson, Compact perturbations of reflexive algebras, Canad. J. Math., 33 (1981), 685-700.
  • [7] K. R. Davidson, Quasitriangular algebras are"maximal", J.Operator Theory, (to appear).
  • [8] K. R. Davidson,Similarity andcompactperturbations of nest algebras, J. Reine Angew. Math., (to appear).
  • [9] J. A. Erdos, Non-selfadjoint Operator Algebras, Proc. Royal Irish Academy, Sect. A, No. 1,81(1981), 127-145.
  • [10] J. A. Erdos, Unitary invariants for nests, Pacific J. Math., 23 (1967), 229-256.
  • [11] T. Fall, W. Arveson and P. Muhly, Perturbations of nest algebras, J. Operator Theory, 1 (1979), 137-150.
  • [12] F. Gilfeather, A. Hopenwasser and D. Larson, Reflexive algebras with finite width lattices', tensorproducts, cohomology, compact perturbations, preprint.
  • [13] B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Analysis, 11 (1972), 39-61.
  • [14] R. V. Kadison, Derivations of operator algebras, Ann. Math., 83 (1966), 280-293.
  • [15] D. R. Larson, Nest algebras and similarity transformations, Ann. Math., (to appear).
  • [16] J. K. Plastiras, Quasitriangular operator algebras, Pacific J. Math., 64 (1976), 543-549.
  • [17] C. E. Rickart, General Theory of Banach Algebras, D. von Nostrand Company, Ltd. (1960).
  • [18] B. H. Wagner, Automorphisms and derivations of certain operator algebras, Doctoral dissertation, University of California, Berkeley (1982).
  • [19] G. Zeller-Meier, Sur les Automorphismes des Algebres de Banach, C. R. Acad. Sci. Paris, 264 (1967), 1131-1132.