Pacific Journal of Mathematics

Derivatives of Blaschke products.

Hong Oh Kim

Article information

Source
Pacific J. Math., Volume 114, Number 1 (1984), 175-190.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708977

Mathematical Reviews number (MathSciNet)
MR755488

Zentralblatt MATH identifier
0551.30029

Subjects
Primary: 30D50
Secondary: 30D55

Citation

Kim, Hong Oh. Derivatives of Blaschke products. Pacific J. Math. 114 (1984), no. 1, 175--190. https://projecteuclid.org/euclid.pjm/1102708977


Export citation

References

  • [1] P. R. Ahern, The mean modulus and derivative of an inner function;Indiana University Math. J., 28, No. 2, (1979); 311-347.
  • [2] P. R. Ahern, The Poisson integral of a singular measure; to appear.
  • [3] P. R. Ahern and D. N. Clark, On inner functions with Hp derivative, Michigan Math. 1,21(1974), 115-127.
  • [4] P. R. Ahern and D. N. Clark, On inner functions with Bp derivative, Michigan Math. J., 23 (1976), 107-118.
  • [5] P. L. Duren, Theory of Hp spaces, Academic Press, New York, NY 1970.
  • [6] P. L. Duren, B. W. Romberg and A. L. Shields, Linearfunctionals on Hp spaces with 0 <p < 1, J. Reine Angew. Math., 238 (1969), 32-60.
  • [7] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities,J. Math. Analysis and AppL, 38 (1972), 746-765.
  • [8] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonicfunctions, Quart. J. Math., 12 (1941), 221-256.
  • [9] G. H. Hardy and J. E. Littlewood, Some properties offractional integrals II, Math. Z., 34 (1932), 403-439.
  • [10] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (//), Proc. London Math. Soc, (2), 42 (1937), 52-89.
  • [11] D. J. Newman and H. S. Shapiro, The Taylor coefficientsof innerfunctions, Michigan Math. J., 9 (1962), 249-255.
  • [12] Ch. Pommerenke, On Bloch functions, J. London Math. Soc, (2), 2 (1970), 689-695.
  • [13] D. Protas, Blaschke product with derivative in Hp and Bp, Michigan Math. J., 30 (1973), 393-396.
  • [14] W. Rudin, The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242.
  • [15] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergmanspaces,Duke Math. J., 43, No. 1 (1976), 187-202.
  • [16] A. L. Shields and D. L. Williams, Boundedprojection, duality and multipliers inspaces of analyticfunctions, Trans. Amer. Math. Soc, 162 (1971), 287-302.
  • [17] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, NY (1959).