Pacific Journal of Mathematics

Weak compactness of representing measures for $R(K)$.

T. W. Gamelin

Article information

Source
Pacific J. Math., Volume 114, Number 1 (1984), 95-107.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708973

Mathematical Reviews number (MathSciNet)
MR755484

Zentralblatt MATH identifier
0541.46042

Subjects
Primary: 46J10: Banach algebras of continuous functions, function algebras [See also 46E25]
Secondary: 30H05: Bounded analytic functions 46E27: Spaces of measures [See also 28A33, 46Gxx] 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]

Citation

Gamelin, T. W. Weak compactness of representing measures for $R(K)$. Pacific J. Math. 114 (1984), no. 1, 95--107. https://projecteuclid.org/euclid.pjm/1102708973


Export citation

References

  • [I] F. Birtel (ed.), Function Algebras, Scott Foresman, 1966.
  • [2] B. Cole and T. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Funct. Anal., 46 (1982), 158-200.
  • [3] S. Fisher, Norm-compact sets of representing measures, Proc. Amer. Math. Soc, 19 (1968), 1063-1068.
  • [4] T. Gamelin, Norm compactness of representing measures for R(K), J. Funct. Anal., 3 (1969), 495-500.
  • [5] T. Gamelin, Iversen's theorem and fiber algebras, Pacific J. Math.,46 (1973), 389-414.
  • [6] T. Gamelin, The Shilo boundary of H(U), Amer. J. Math., 96 (1974), 79-103.
  • [7] T. Gamelin, Lectures on QC(D), Notas de Matematica, Universidad Nacional de La Plata, Argentina, 1972.
  • [8] T. Gamelin, Uniform A Igebras,Prentice-Hall, 1969.
  • [9] T. Gamelin and J. Garnett,Distinguished homomorphisms and fiber algebras, Amer. J. Math., 92 (1970), 455-474.
  • [10] T. Gamelin and J. Garnett, Bounded approximation by rational functions, Pacific J. Math., 45 (1973), 129-150.
  • [II] I. Glicksberg, Equivalence of certain representing measures, Proc. Amer. Math. Soc, 82(1981), 374-376.
  • [12] R. McKissick, A non-trivial normal sup norm algebra, Bull. Amer. Math. Soc, 69 (1963), 391-395.
  • [13] B. 0ksendal, Gleason parts separated by smooth curves, J. Funct. Anal., 22 (1976), 283-294.
  • [14] J.-P. Rosay, Une equivalence au coronaprobleme dans Qn et un probleme d 'ideal dans H(D), J. Funct. Anal., 7 (1971), 71-84.