Pacific Journal of Mathematics

Typesets and cotypesets of rank-$2$ torsion free abelian groups.

D. Arnold and C. Vinsonhaler

Article information

Source
Pacific J. Math., Volume 114, Number 1 (1984), 1-21.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708969

Mathematical Reviews number (MathSciNet)
MR755480

Zentralblatt MATH identifier
0496.20040

Subjects
Primary: 20K15: Torsion-free groups, finite rank

Citation

Arnold, D.; Vinsonhaler, C. Typesets and cotypesets of rank-$2$ torsion free abelian groups. Pacific J. Math. 114 (1984), no. 1, 1--21. https://projecteuclid.org/euclid.pjm/1102708969


Export citation

References

  • [1] D. Arnold, Pure Subgroups of Finite Rank Completely Decomposable Groups, Pro- ceedings of Oberwolfach Abelian group theory conference, Springer-Verlag Lecture Notes in Mathematics 874 (1981), 1-28.
  • [2] D. Arnold, Finite Rank Torsion Free Groups and Rings, Springer-Verlag Lecture Notes in Mathematics #931, Berlin, Heidelberg, New York, 1982.
  • [3] R. Beaumont and R. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc.,38(1961).
  • [4] L. De Munter-Kuyl, A note on the existence of torsion-free modules with a prescribed type-set, Proc. Amer. Math. Soc, 80 (1980), 531-532.
  • [5] D. Dubois, Applications of analytic number theory to the study of typesets of torsion free abelian groups I, Publ. Math., 12 (1965), 59-63.
  • [6] D. Dubois, Applications of analytic number theory to the study of typesets of torsion free abelian groups II, Publ. Math., 13 (1966), 1-8.
  • [7] L. Fuchs, Infinite Abelian Groups,Vol. II,Academic Press, New York, 1973.
  • [8] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979.
  • [9] R. Ito, On type-sets of torsion free abelian groups of rank two, Proc. Amer. Math. Soc, 48 (1975), 39-42.
  • [10] J. Koehler, Some torsion free rank two groups, Acta. Sci. Math. Szeged, 25 (1964), 186-190.
  • [11] P. Schultz, The typeset and cotypeset of a rank two abelan group, Pacific J. Math., 70 (1978), 503-517.
  • [12] C. Vinsonhaler and W. Wickless, The cotypeset of a torsion free abelian group of rank two, Proc. Amer. Math. Soc, 84 (1982), 467-473.
  • [13] C. Vinsonhaler and W. Wickless, The cotypeset of a torsion free abelian group of finite rank, J. Algebra, 83No. 2(1983), 380-386.
  • [14] R. Warfield, Jr., Homomorphisms and duality of torsion free groups, Math. Z., 107 (1968), 189-200.