Pacific Journal of Mathematics

Recursively enumerable sets and van der Waerden's theorem on arithmetic progressions.

Carl G. Jockusch, Jr. and Iraj Kalantari

Article information

Source
Pacific J. Math., Volume 115, Number 1 (1984), 143-153.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708416

Mathematical Reviews number (MathSciNet)
MR762206

Zentralblatt MATH identifier
0571.03017

Subjects
Primary: 03D80: Applications of computability and recursion theory
Secondary: 03D25: Recursively (computably) enumerable sets and degrees 03F65: Other constructive mathematics [See also 03D45] 11B25: Arithmetic progressions [See also 11N13]

Citation

Jockusch, Carl G.; Kalantari, Iraj. Recursively enumerable sets and van der Waerden's theorem on arithmetic progressions. Pacific J. Math. 115 (1984), no. 1, 143--153. https://projecteuclid.org/euclid.pjm/1102708416


Export citation

References

  • [1] R. Graham,B. Rothchild and J. Spencer, Ramsey Theory, Wiley, 1980.
  • [2] A. Y. Khinchin, Three Pearls of Number Theory, Graylock Press, Rochester, New York 1952.
  • [3] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw- Hill, New York 1967.
  • [4] E. Szemeredi, On sets of integers containing no k elements in arithmetic progressions, Acta Arith., 27 (1975), 299-345.
  • [5] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk, 15 (1927), 212-216.
  • [6] B. van der Waerden, How the Proof of BaudefsConjecture Was Found, Studies in Pure Mathe- matics (edited by L. Mirsky), Academic Press, pp. 251-260 (1971).