Pacific Journal of Mathematics

Bimeasure algebras on LCA groups.

Colin C. Graham and Bertram M. Schreiber

Article information

Pacific J. Math., Volume 115, Number 1 (1984), 91-127.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.
Secondary: 46K99: None of the above, but in this section 46M05: Tensor products [See also 46A32, 46B28, 47A80]


Graham, Colin C.; Schreiber, Bertram M. Bimeasure algebras on LCA groups. Pacific J. Math. 115 (1984), no. 1, 91--127.

Export citation


  • [I] T. K. Carne, Tensor products and Banach algebras, J. London Math. Soc, (2) 17 (1978), 480-488.
  • [2] T. K. Carne, Representation theoryfor tensorproducts of Banach algebras, (preprint).
  • [3] P. J. Cohen, On homomorphisms of group algebras, Amer. J. Math., 82 (1960), 213-226.
  • [4] S. W. Drury, Sur les ensembles de Sidon, C.R. Acad. Sci. Paris Ser. A-B, 271(1970), A162-A163.
  • [5] C. F. Dunkl and D. E. Ramirez, Topics in Harmonic Analysis, Appleton-Century- Crofts, New York, 1971.
  • [6] W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J., 22 (1955), 465-468.
  • [7] R. E. Edwards,On factor functions, Pacific J. Math., 5 (1955),367-378.
  • [8] J. E. Gilbert, Harmonic Analysis and the Grothendieck Fundamental Theorem, Sym- posia Math., 22 (1977),393-420.
  • [9] J. E. Gilbert, On the tensorproduct of Banach algebras which are t-spaces, (preprint).
  • [10] J. E. Gilbert, T. Ito and B. M. Schreiber, Bimeasure algebras on locally compact groups, J. Funct. Anal., to appear.
  • [II] J. E. Gilbert and T. J. Leih, Factorization, Tensor Products and Bilinear Forms in Banach Space Theory, Notes in Banach Spaces, H. E. Lacey, ed., Univ. of Texas Press, Austin, Texas, 1980, pp. 182-305.
  • [12] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grund. der Math. Wissen. No.238, Springer-Verlag, Berlin/Heidelberg/New York, 1979.
  • [13] A. Grothendieck, Produits tensoriels topologiques et espaces nucleares, Mem.Amer. Math. Soc. No. 16, Amer. Math. Soc, Providence, RI, 1955.
  • [14] A. Grothendieck, Resume de la thorie metrique des produits tensoriels topologiques, Bol. Soc. Mat.Sao Paulo, 8 (1956), 1-79.
  • [15] H. Helson, Isomorphisms of abelian group algebras, Ark. Mat.,2 (1953),475-487.
  • [16] E. Hewitt and K. A. Ross,Abstract Harmonic Analysis, Vols. I, II,Grundl. der Math. Wissen. Nos. 115, 152, Springer-Verlag,Berlin/Heidelberg/New York, 1963, 1970.
  • [17] T. Ito and B. M. Schreiber,A space of sequences given by pairs of unitary operators, Proc. Japan Acad., 46 (1970), 637-641.
  • [18] J. Lindenstrauss and A. Peiczyski, Absolutely summing operators in t spaces and their applications, Studia Math., 29 (1968),275-326.
  • [19] L. H. Loomis, An Introduction to Harmonic Analysis, Van Nostrand, Princeton, New Jersey, 1953.
  • [20] H. K. Milne, The injective tensor product of Banach algebras which are ^-spaces, Bull. London Math. Soc, 8 (1976),261-262.
  • [21] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc, 48 (1940), 516-541.
  • [22] D. E. Ramirez, Uniform approximation by Fourier-Stieltjes transforms, Proc Camb. Phil. Soc,64 (1968), 323-333.
  • [23] D. Rider, Randomly continuous functions and Sidon sets, Duke Math. J., 42 (1975), 752-764.
  • [24] W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Appl. Math No. 12 Wiley, New York, 1962.
  • [25] S. Saeki, Tensor products of C(X)~spaces and their conjugate spaces, J. Math. Soc. Japan, 28 (1976), 33-47.
  • [26] R. Schatten, A Theory of Cross Spaces, Annals of Math. Studies No. 26, Princeton Univ. Press, Princeton,New Jersey, 1950.
  • [27] B. Sz.-Nagy and C. Foia, Analyse Harmonique des Operateurs de Uespace de Hilbert, Academiai Kida, Budapest, 1967.
  • [28] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1968), 51-112.