Pacific Journal of Mathematics

Topological properties of Banach spaces.

G. A. Edgar and R. F. Wheeler

Article information

Source
Pacific J. Math., Volume 115, Number 2 (1984), 317-350.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708251

Mathematical Reviews number (MathSciNet)
MR765190

Zentralblatt MATH identifier
0546.46014

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces
Secondary: 46B10: Duality and reflexivity [See also 46A25]

Citation

Edgar, G. A.; Wheeler, R. F. Topological properties of Banach spaces. Pacific J. Math. 115 (1984), no. 2, 317--350. https://projecteuclid.org/euclid.pjm/1102708251


Export citation

References

  • [I] J. Aarts and D. Lutzer, Completeness properties designedfor recognizingBaire space, Dissertationes Math., 116(1974).
  • [2] D. Amir and J. Lindenstrauss,Thestructure of weakly compact sets in Banach spaces, Annals of Math., 88 (1968), 35-46.
  • [3] J. Bourgain, Dentability and finite-dimensional decompositions, Studia Math., 67 (1980), 135-148.
  • [4] J. Bourgain, New Classes of &p-spaces, Lecture Notes in Mathematics 889, Springer- Verlag, 1981.
  • [5] J. Bourgain and F. Delbaen,A class of special^00-spaces, Acta Math., 145 (1980), 155-176.
  • [6] J. Bourgain and H. Rosenthal, Geometricalimplications of certain finite dimensional decompositions, Bull. Soc. Math. Belg., 32 (1980), 57-82.
  • [7] J. Clark, Coreflexive and somewhat reflexive Banach spaces, Proc. Amer. Math. Soc, 36 (1972), 421-427.
  • [8] H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc, 101 (1961), 1-15.
  • [9] W. Davis and R. Phelps, The Radon-Nikodymproperty and deniable sets in Banach spaces, Proc. Amer. Math. Soc,45 (1974), 119-122.
  • [10] W. Davis and I. Singer, Boundedly complete M-bases and complemented subspaces in Banach spaces, Trans.Amer. Math. Soc, 175 (1973), 187-194.
  • [II] J. Diestel, Geometry of Banach Spaces--Selected Topics, Lecture Notes in Mathe- matics 485, Springer-Verlag, 1975.
  • [12] J. Diestel, A survey of results related to the Dunford-Pettis property, Proc. Conf. on Integration, Topology, and Geometryin Linear Spaces, Amer. Math. Soc. Contemp. Mathematics 2, (1980), 15-60.
  • [13] J. Diestel and J. Uhl, Vectors Measures, Amer. Math. Soc Math. Surveys 15, American Mathematical Society, 1977.
  • [14] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, 1957.
  • [15] G. Edgar, Measurability in a Banach space, Indiana Univ. Math. J., 26 (1977), 663-677.
  • [16] G. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J., 28 (1979), 559-579.
  • [17] G. Edgar, A Long James Space, Measure Theory, Oberwolfach 1979, D. Klzow (editor), Lecture Notes in Mathematics 794, Springer-Verlag, (1980), 31-37.
  • [18] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warsaw, 1977.
  • [19] Z. Frolik, Generalizations of the G property of complete metric spaces, Czech. Math. J., 10 (85) (1960), 359-378.
  • [20] Z. Frolik, Baire spaces and some generalizations of complete metric spaces, Czech. Math. J., 11 (86) (1961), 237-247.
  • [21] G. Godefroy, Epluchabilite et unicite du predual, Sem. Choquet 1977/78, Comm. #11.
  • [22] G. Godefroy, Espaces de Banach: existence et unicite de certains preduaux, Ann. Inst. Fourier (Grenoble),28, no. 3 (1978), 87-105.
  • [23] G. Godefroy, Compacts de Rosenthal, Pacific J. Math., 91 (1980), 293-306.
  • [24] W. Govaerts, A productive class of angelic spaces, J. London Math. Soc, (2) 22 (1980), 355-364.
  • [25] J. Hagler, A counterexample to several questions about Banach spaces, Studia Math., 60 (1977), 289-308.
  • [26] J. Hagler and W. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math., 28 (1977), 325-330.
  • [27] R. Haworth and R. McCoy, Baire Spaces, Dissertationes Math., 141 (1977).
  • [28] W. Hurewicz, Relative perfekte Teile von Punktmengenund Mengen (A), Fund. Math., 12 (1928), 78-109.
  • [29] R. James, Separable conjugate spaces, Pacific J. Math., 10 (1960), 563-571.
  • [30] R. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc, 80 (1974), 738-743.
  • [31] W. Johnson and H. Rosenthal, On *-basicsequences and their applications to the study of Banach spaces, Studia Math.,43 (1972), 77-92.
  • [32] W. Johnson, H. Rosenthal, and M. Zippin, On bases, finite-dimensional decomposi- tions, and weaker structures in Banach spaces, Israel J. Math., 9 (1971), 488-506.
  • [33] P. Kenderov, Dense strong continuity of pointwise continuous mappings, Pacific J. Math., 89 (1980), 111-130.
  • [34] J. Kerstan, Eine Klasse topologischer Rume, die die polnischen Rume und die -kompakten lokalkompakten Hausdorffschen Rume verallgemeinern, Theory of Sets and Topology, G. Asser, J. Flachsmeyer, and W. Rinow (editors), VEB Deutscher Verlag der Wissenschaften, 1972, pp. 291-311.
  • [35] T. Kuo, On conjugate Banach spaces with the Radon-Nikodym property, Pacific J. Math., 59 (1975), 497-503.
  • [36] J. Lindenstrauss, On James' paper "Separable conjugate spaces", Israel J. Math., 9 (1971), 279-284.
  • [37] J. Lindenstrauss, Weakly compact sets--their topologicalproperties and the Banach spaces they generate, Proc. Sympos. Infinite-Dimensional Topology, Ann. of Math. Studies 69, Princeton University Press, (1972), 235-293.
  • [38] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain I1 and whose duals are non-separable,Studia Math., 54 (1975), 81-105.
  • [39] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I. SequenceSpaces, Ergebnisse der Mathematik und Ihrer Grenzgebiete 92, Springer-Verlag, 1977.
  • [40] H. Maynard, A geometrical characterization of Banach spaces with the Radon-Niko- dym property, Trans. Amer. Math. Soc, 185 (1973), 493-500.
  • [41] R. MeWilliams, On certain Banach spaces which are weak*-sequentially dense in their second duals, Duke Math. J, 37 (1970), 121-126.
  • [42] I. Namioka, Separate continuity and joint continuity, Pacific J. Math., 51 (1974), 515-531.
  • [43] E. Odell and H. Rosenthal, A double-dual characterization of separable Banach spaces containing l\ Israel J. Math., 20 (1975), 375-384.
  • [44] R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci., 25 (1977), 993-997.
  • [45] R. Pol, On a question of H. H. Corson and some related problems, Fund. Math., 109 (1980), 143-154.
  • [46] R. Pol, The Lindel'fproperty and its convex analogue in function spaces with the weak topology, Topology, vol. II,A. Csaszar (editor), North-Holland, (1980), 965-969.
  • [47] D. Preiss, Metric spaces in which Prohorov's theorem is not valid, Z. Wahrschein- lichkeitstheorie und Verw. Gebiete, 27 (1973), 109-116.
  • [48] H. Rosenthal, On injective Banach spaces and the spaces L() for finite measures , Acta Math., 124 (1970), 205-248.
  • [49] J. Saint-Raymond,La structure borelienne d'Effros est-elle standard!, Fund. Math., 100 (1978), 201-210.
  • [50] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces I, Trans. Amer. Math. Soc, 206 (1975), 213-223.
  • [51] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces II, Trans. Amer. Math. Soc, 264 (1981), 507-519.
  • [52] M. Talagrand, Sur une conjecture de H. H. Corson, Bull. Sci. Math., (2) 99 (1975), 211-212.
  • [53] F. Topsoe and J. Hoffmann-Jorgensen, Analytic Spaces and Their Application, Analytic Sets, C. A. Rogers, et. al., Academic Press, 1980.
  • [54] M. Valdivia, On a class of Banach spaces, Studia Math., 60 (1977), 11-13.
  • [55] R. Wheeler, The retractionproperty, CCC property, and Dunford-Pettis-Phillips prop- erty for Banach spaces, Measure Theory, Oberwolfach 1981, D. Klzow (editor), Lecture Notes in Mathematics945, Springer-Verlag, 1982, pp. 252-262.
  • [56] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill,1978.