Pacific Journal of Mathematics

On the atomic decomposition for Hardy spaces.

J. Michael Wilson

Article information

Source
Pacific J. Math., Volume 116, Number 1 (1985), 201-207.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102707257

Mathematical Reviews number (MathSciNet)
MR769832

Zentralblatt MATH identifier
0563.42012

Subjects
Primary: 42B30: $H^p$-spaces

Citation

Wilson, J. Michael. On the atomic decomposition for Hardy spaces. Pacific J. Math. 116 (1985), no. 1, 201--207. https://projecteuclid.org/euclid.pjm/1102707257


Export citation

References

  • [1] A. P. Caldern, An atomic decomposition of distributions inparabolic Hp spaces, Adv. in Math., 25 (1977),216-225.
  • [2] S.-Y. Chang and R. Feffenan, A continuous version of duality of H with BMO on the bidisc, Ann. of Math., 112 (1980), 179-201.
  • [3] S.-Y. Chang and R. Feffenan, The Caldern-Zygmunddecomposition onproduct domains, preprint.
  • [4] R. R. Coifman, A real variable characterization of Hp, Studia Math., 51 (1974), 269-74.
  • [5] R. Coifman, Y. Meyer and E. M. Stein, Un nouvel espacefonctionnel adapte a etude des operateurs definiepar des integrates singulieres, preprint.
  • [6] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137-193.
  • [7] R. H. Latter, A characterization of HP(RP)in terms of atoms, Studia Math., 62 (1978), 93-101.
  • [8] K. G. Merryfield,Hp spaces inpoly-half spaces, Ph.D. Thesis, University of Chicago, 1980.
  • [9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
  • [10] J. M. Wilson, A simple proof of the atomic decomposition for Hp(Rn),0 < p < 1, Studia Math., 74 (1982), 25-33.