Pacific Journal of Mathematics

The ordering structure on Banach spaces.

G. A. Edgar and Jun Feng Zhao

Article information

Source
Pacific J. Math., Volume 116, Number 2 (1985), 255-263.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102707063

Mathematical Reviews number (MathSciNet)
MR771635

Zentralblatt MATH identifier
0554.46006

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces

Citation

Edgar, G. A.; Zhao, Jun Feng. The ordering structure on Banach spaces. Pacific J. Math. 116 (1985), no. 2, 255--263. https://projecteuclid.org/euclid.pjm/1102707063


Export citation

References

  • [1] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys 15, Amer. Math. Soc, 1977.
  • [2] N. Dunford and J. T. Schwartz, Linear operators, Part L Interscience, 1957.
  • [3] G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J., 26 (1977), 663-677.
  • [4] G. A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J., 28 (1979), 559-579.
  • [5] G. A. Edgar,An orderingfor the Banach spaces, Pacific J. Math., 108 (1983), 83-98.
  • [6] G. A. Edgar, A Long James Space, In: Measure Theory, Oberwolfach, 1979, edited by D. Kolzow, Lecture Notes in Mathematics 794, Springer-Verlag, 1980.
  • [7] A. Godefroy and M. Talagrand, Classes d'espaces de Banach a predual unique, C. R. Acad. Sci. Paris, 292 (1981), 323-325.
  • [8] J. L. Kelley, General Topology, 1955.
  • [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergebnisse der Mathema- tik und ihrer Grenzgebiete 92, Springer-Verlag, 1977.