Pacific Journal of Mathematics

Some theorems in probability theory.

Bernard R. Gelbaum

Article information

Source
Pacific J. Math., Volume 118, Number 2 (1985), 383-391.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102706446

Mathematical Reviews number (MathSciNet)
MR789178

Zentralblatt MATH identifier
0569.60003

Subjects
Primary: 60E05: Distributions: general theory
Secondary: 60G60: Random fields

Citation

Gelbaum, Bernard R. Some theorems in probability theory. Pacific J. Math. 118 (1985), no. 2, 383--391. https://projecteuclid.org/euclid.pjm/1102706446


Export citation

References

  • [1] G.Darmois, Analyse generate desliaisons sochastiques, Rev. Inst. Intern. Stat, 21 (1953), 2-8.
  • [2] B. R. Gelbaum, Independence of events and of random variables, Zeitschrift fur WahrscheinHchkeitstheorie, 36(1976), 333-342.
  • [3] A. M.Kagan, Yu. V. Linnik andC.R. Rao, Characterization Problems in Mathe- matical Statistics, John Wiley &Sons, New York, 1973.
  • [4] R.Hemasinha, Ph.D.dissertation, SUNY/Buffalo, 1983.
  • [5] Yu. V. Linnik, Decomposition of Probability Distributions, Oliver andBoyd,Ltd. Edinburgh, 1964.
  • [6] E.Nelson, Probability Theory andEuclidean Field Theory, in Constructive quantum field theory, Springer-Verlag, 1973.
  • [7] I. Segal, Tensor algebras over Hilbert spaces, I, Trans. Amer. Math. So, 81(1956), 106-134.
  • [8] V. P. Skitovich, On a property of the normal distribution, DAN SSSR, 89 (1953), 217-217.
  • [9] V. P. Skitovich,Linear forms inindependent random variables and thenormal distribution law, Izvestia AN SSSR, Ser. Matem.
  • [10] J.von Neumann, GrundlagenderQuantenmechanik, Dover Publications, New York, 1943.