Pacific Journal of Mathematics

The Diophantine equation $ax+by=c$ in ${\bf Q}(\sqrt 5)$ and other number fields.

David Rosen

Article information

Source
Pacific J. Math., Volume 119, Number 2 (1985), 465-472.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102706165

Mathematical Reviews number (MathSciNet)
MR803129

Zentralblatt MATH identifier
0567.10010

Subjects
Primary: 11D04: Linear equations
Secondary: 11A55: Continued fractions {For approximation results, see 11J70} [See also 11K50, 30B70, 40A15]

Citation

Rosen, David. The Diophantine equation $ax+by=c$ in ${\bf Q}(\sqrt 5)$ and other number fields. Pacific J. Math. 119 (1985), no. 2, 465--472. https://projecteuclid.org/euclid.pjm/1102706165


Export citation

References

  • [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford: Clarendon Press, 4th edition, 1960.
  • [2] A. Leutbecher, Uber die Heckeschen Gruppen G(), Abh. Math. Sem., Hamburg, 31 (1967), 199-205.
  • [3] I. Niven and H. S. Zuckerman, introduction to the Theory of Numbers, John Wiley and Sons, Inc.,2nd edition, 1966.
  • [4] D. Rosen, A Class of Continued Fractions Associated with Certain ProperlyDiscontinu- ous Groups, Duke Math.,21 (1954), 549-563.
  • [5] J. Wolfart, Eine Bemerkung ber Heches Modulgruppen, Arch, der Math., 29 #1 (1977), 72-77.