Pacific Journal of Mathematics

Universal observability and codimension one subgroups of Borel subgroups.

John Brendan Sullivan

Article information

Source
Pacific J. Math., Volume 120, Number 1 (1985), 215-227.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703895

Mathematical Reviews number (MathSciNet)
MR808939

Zentralblatt MATH identifier
0576.20027

Subjects
Primary: 14L17: Affine algebraic groups, hyperalgebra constructions [See also 17B45, 18D35]
Secondary: 20G15: Linear algebraic groups over arbitrary fields

Citation

Sullivan, John Brendan. Universal observability and codimension one subgroups of Borel subgroups. Pacific J. Math. 120 (1985), no. 1, 215--227. https://projecteuclid.org/euclid.pjm/1102703895


Export citation

References

  • [1] Bialynicki-Birula, Hochschild, and Mostow, Extensions of representations of algebraic linear groups, Amer. J. Math., 85 (1963), 131-144.
  • [2] G. Hochschild, Introduction to Affine Algebraic Groups, Holden-Day, San Francisco, 1971.
  • [3] J. Sullivan, Repesentations of the hyperalgebra of an algebraic group, Amer. J. Math., 100 (1978), 643-52.
  • [4] J. Sullivan, Quasi-affinehomogeneousspaces, J. Algebra, 77,No. 2, (1982), 544-551.
  • [5] M. Sweedler, Unpublished notes on universal observability.