Pacific Journal of Mathematics

Finding a boundary for a Hilbert cube manifold bundle.

Scott C. Metcalf

Article information

Source
Pacific J. Math., Volume 120, Number 1 (1985), 153-178.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703890

Mathematical Reviews number (MathSciNet)
MR808935

Zentralblatt MATH identifier
0553.57005

Subjects
Primary: 57N20: Topology of infinite-dimensional manifolds [See also 58Bxx]
Secondary: 57N25: Shapes [See also 54C56, 55P55, 55Q07]

Citation

Metcalf, Scott C. Finding a boundary for a Hilbert cube manifold bundle. Pacific J. Math. 120 (1985), no. 1, 153--178. https://projecteuclid.org/euclid.pjm/1102703890


Export citation

References

  • [1] H. Bass, A. Heller, and R. Swann, The Whitehead group of a polynomial extension, Publ. Math. I.H.E.S. Paris, 22 (1964), 61-79.
  • [2] K. Borsuk, Theory of Shape, Mathematical Monographs, Vol. 59, Polish Scientific Publishing House,Warsaw. (1975).
  • [3] W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. of Math.,87 (1965), 1017-1028.
  • [4] Dan Burghelea, Richard Lashof, and Melvin Rothenberg, Groups of Automorphisms of Manifolds, Springer Lecture Notes,473 (1975).
  • [5] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math.,76 (1972), 181-193.
  • [6] T. A. Chapman, Finding boundariesfor Hubert Cube manifolds,preprint.
  • [7] T. A. Chapman, Concordances of non-compactHubert cube manifolds, Pacific J. of Math.,63 (1976), 89-124.
  • [8] T. A. Chapman, Lectures on Hubert cube manifolds, C.B.M.S. Regional Conference Series in Math., no. 28, Amer. Math. Soc., 1976.
  • [9] T. A. Chapman,A controlledboundarytheoremfor Hubert cube manifolds, Topology Appl., 14 (1982), 247-262.
  • [10] T. A. Chapman and Steve Ferry, Hurewiczfiber maps withANR fibers, Topology, 16 (1977), 131-143.
  • [11] T. A. Chapman and Steve Ferry, Fibering Hubert cube manifolds over ANRs, Compositio Mathematica, Vol.
  • [12] T. A. Chapman and Steve Ferry, The Hauptermutungfor Hubert cube manifolds and fibered triangulationsof Hilbert cube manifoldfiber bundles, unpublished manuscript.
  • [13] T. A. Chapman and Steve Ferry, manuscript in preparation.
  • [14] T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube manifold,Acta. Math., 137 (1976), 171-208.
  • [15] T. A. Chapman and R. Y. T. Wong, On homeomorphisms of infinite dimensional bundles III, Trans.Amer. Math. Soc, 191 (1974), 269-276.
  • [16] M. M. Cohen, A Course in Simple-Homotopy Theory,Springer-Verlag, 1973.
  • [17] A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math., (2) 78 (1963), 223-255.
  • [18] D. A. Edwards and H. M. Hastings, Every weak proper homotopy equivalence is weakly properly homotopic to a proper homotopy equivalence, Trans. Amer. Math. Soc, 221,No.1 (1976), 239-248.
  • [19] Steve Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math., 106 (1977), 101-119.
  • [20] Ross Geoghegan (ed.), Open problems in infinite-dimensional topology, Topology Proceedings, 4 (1979), 287-338.
  • [21] A. E. Hatcher, Higher simple homotopy theory I, Ann. of Math., (2) 102 (1975) 101-137.
  • [22] A. E. Hatcher, Concordance Spaces, Higher Simple-Homotopy Theory, and Applications, Proc of Symp. in Pure Math. Vol. 32 Part I (1978), 3-21.
  • [23] A. E. Hatcher and J. Wagoner, Pseudo-Isotopes of compact manifolds, Asterisque 6, 1973.
  • [24] C. Bruce Hughes, Local homotopy properties in spaces of approximate fibrations, Doctoral dissertation,Univ. of Kentucky,1981.
  • [25] S. Mardesic and J. Segal,Equivalence of the Borsuk and the ANR-system approach to shapes, Fund. Math., 72 (1971), 61-68.
  • [26] L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greaterthan five, Doctoraldissertation. Princeton Univ.,1965.
  • [27] L. C. Siebenmann, Infinite simplehomotopytypes, Indag. Math., 32 (1970), 479-495.
  • [28] J. Stallings, Whiteheadtorsion offree products,Ann. of Math., 82 (1965), 354-363.
  • [29] H. Torunczyk and J. West, Fibrations and bundles with Hilbert cube manifold fibers, preprint.