Pacific Journal of Mathematics

Free products of topological groups with amalgamation. II.

Elyahu Katz and Sidney A. Morris

Article information

Source
Pacific J. Math., Volume 120, Number 1 (1985), 123-130.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703886

Mathematical Reviews number (MathSciNet)
MR808932

Zentralblatt MATH identifier
0589.22001

Subjects
Primary: 22A05: Structure of general topological groups

Citation

Katz, Elyahu; Morris, Sidney A. Free products of topological groups with amalgamation. II. Pacific J. Math. 120 (1985), no. 1, 123--130. https://projecteuclid.org/euclid.pjm/1102703886


Export citation

References

  • [1] Elyahu Katz and Sidney A. Morris, Freeproducts of topological groups with amalgama- tion, Pacific J. Math.,119 (1985), 169-180.
  • [2] M. S. Khan and Sidney A. Morris, Free products of topological groups with central amalgamation I, Trans. Amer. Math. So, 273 (1982), 405-416.
  • [3] M. S. Khan and Sidney A. Morris, Free products of topological groups with central amalgamation II, Trans. Amer. Math. Soc, 273 (1982), 417-432.
  • [4] W. Magnus, A. Karrass and D. Solitar, CombinatorialGroup Theory, (Dover Publ. Inc., New York, 1976.)
  • [5] Sidney A. Morris, E. T. Ordman and H. B. Thompson, The Topology of Free Products of TopologicalGroups,Proc. Second Internat. Conf. on the theory of groups, Lecture Notes in Mathematics372 (1974), 504-515.
  • [6] B. H. Neumann, An essay on free products with amalgamations, Philos. Trans. Roy. Soc. London (A), 246 (1954), 503-554.
  • [7] Peter Nickolas, Subgroupsof thefree topological groupon [0,1], J. London Math. Soc, (2) 12 (1976), 199-205.
  • [8] Peter Nickolas, A Kurosh subgroup theoremfor topological groups, Proc. London Math. Soc, 42 (1981), 461-467.
  • [9] E. T. Ordman, Free products of topological groups with equal uniformities I, Colloq. Math., 31 (1974), 37-43.

See also

  • I : Elyahu Katz, Sidney A. Morris. Free products of topological groups with amalgamation. Pacific Journal of Mathematics volume 119, issue 1, (1985), pp. 169-180.