Pacific Journal of Mathematics

$W^\ast$-categories.

P. Ghez, R. Lima, and J. E. Roberts

Article information

Source
Pacific J. Math., Volume 120, Number 1 (1985), 79-109.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102703884

Mathematical Reviews number (MathSciNet)
MR808930

Zentralblatt MATH identifier
0609.46033

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 46L05: General theory of $C^*$-algebras 46M15: Categories, functors {For $K$-theory, EXT, etc., see 19K33, 46L80, 46M18, 46M20}

Citation

Ghez, P.; Lima, R.; Roberts, J. E. $W^\ast$-categories. Pacific J. Math. 120 (1985), no. 1, 79--109. https://projecteuclid.org/euclid.pjm/1102703884


Export citation

References

  • [1] S. Albeverio and R. Hoegh-Krohn, Ergodic actions by compact groups on C*-alge- bras, Preprint Marseille-Oslo.
  • [2] M. Artin, A. Grothendieck and J. L. Verdier, Theoriedes Toposet Cohomologie Etale des Schemas, Lecture Notes in Mathematics 269, Springer, Berlin, Heidelberg, New York 1972.
  • [3] F. Combes, Poids associes a une Algebre Hilbertienne, Comp. Math., 23 (1971), 49-77.
  • [4] A. Connes, Une Classification des Facteurs de Type HI, Ann. Scient. de PEcole Normale Superieure, (4) 6 (1972), 133-252.
  • [5] A. Connes, Sur la Theorie non Commutative de Integration, Algebres d'Operateurs, Lecture Notes in Mathematics, 725, Springer, Berlin, Heidelberg, New York (1979).
  • [6] A. Connes and M. Takesaki, Theflow of weightson factors of type III, Tohoku Math. J. 29 (1977), 473-575.
  • [7] J. Dixmier, Les C*-Algebres et leursRepresentations, Gauthier-Villars, Paris (1964).
  • [8] J. Dixmier, Les Algebres d'Operateurs dans Espace Hilbertien, 2eme edition, Gauthier- Villars (1969).
  • [9] D. E. Evans and T. Sund, Spectralsubspacesfor compactactions,Preprint Oslo.
  • [10] P. Ghez, R. Lima and J. E. Roberts, The spectral category and the Connes invariant , J. Operator Theory, 14 (1985), 129-146.
  • [11] G. G. Kasparov, Hubert C*-modules', theorem of Stinespring and Voiculescu, J. Operator Theory, 4 (1980), 133-150.
  • [12] M. Landstad, Algebras of spherical functions associated with coariant systems over a compact group, Math. Scand., 47 (1980), 137-149.
  • [13] S. MacLane, Categories for the Working Mathematician, Springer, Berlin, Heidel- berg, New York (1971).
  • [14] Y. Nakagami and M. Takesaki, Duality for Crossed Products of von Neumann Algebras, Lect. Notes in Math.No. 731, (1979), Springer-Verlag.
  • [15] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Soc, 182 (1973), 443-468.
  • [16] W. L. Paschke, Inner product modules arising from compact automorphism groups of von Neumann algebras, Trans. Amer. Math. Soc., 224 (1976), 87-102.
  • [17] G. Pedersen, Measure theoryfor C*-algebras, Math. Scand., 19 (1966), 131-145.
  • [18] G. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-87.
  • [19] J. Renault, A Groupoid Approach to C*-algebras, Lect. Notes in Math. No. 793 (1980), Springer-Verlag.
  • [20] M. Rieffel, Morita equivalence for C*-algebraa and W*-Algebras, J. Pure and Applied Algebra, (1974), 51-96.
  • [21] J. E. Roberts, Some applications of dilation invariance to structural questions in the theory of local observables,Commun.Math. Phys., 37 (1974), 273-286.
  • [22] J. E. Roberts, Cross products of von Neumann algebras by group duals, Symposia Mathe- matica, 22 (1976), 335-363.
  • [23] J. E. Roberts, A Survey of Local Cohomology. In: Proceedings of the Conference on Mathe- matical Problems in Theoretical Physics, Roma 1977, Lecture Notes in Physics 80, Springer, Berlin, Heidelberg, New York (1978).
  • [24] J. E. Roberts, Spontaneously broken gauge symmetries and superselection rules. In: Pro- ceedings of the International School of Mathematical Physics, Universita di Camerino (1976).
  • [25] J. E. Roberts, Net Cohomology and its Applications to Field Theory, In: Quantum Fields-Al- gebras, Processes, ed. L. Streit, 239-268, Springer, Wien, New York 1980.
  • [26] J. E. Roberts, New light on the mathematical structure of algebraic field theory, Proc. Sympos. Pure Math.,38 Part 2, (1982), 523-550.
  • [27] S. Sakai, C*-Algebras, Springer, Berlin, Heidelberg, New York (1971).
  • [28] C. E. Sutherland, Cohomology and extensions of von Neumann algebras, preprint Queen's University.
  • [29] S. L. Woronowicz, Duality in the C*-Algebra theory, Marseille Preprint 1983.