Pacific Journal of Mathematics

Asymptotic expansions of the Lebesgue constants for Jacobi series.

C. L. Frenzen and R. Wong

Article information

Source
Pacific J. Math., Volume 122, Number 2 (1986), 391-415.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102701892

Mathematical Reviews number (MathSciNet)
MR831120

Zentralblatt MATH identifier
0556.33010

Subjects
Primary: 33A65
Secondary: 42C05: Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45]

Citation

Frenzen, C. L.; Wong, R. Asymptotic expansions of the Lebesgue constants for Jacobi series. Pacific J. Math. 122 (1986), no. 2, 391--415. https://projecteuclid.org/euclid.pjm/1102701892


Export citation

References

  • [1] L. Fejer, Lebesguesche Konstanten und diergente Fourierreihen, J. Reine Angew. Math., 138 (1910), 22-53.
  • [2] C. L. Frenzen and R. Wong, A uniform asymptotic expansion of the Jacobi polynomi- als with error bounds, Canad. J. Math., to appear.
  • [3] C. L. Frenzen and R. Wong, On the asymptotic behavior of the Lebesgue constants for Jacobi series, C. R. Math. Acad. Sci. Canada,6 (1984), 267-271.
  • [4] T. H. Gronwall, Uber die Lebesgueschen Konstanten bei den Fourierschen Reihen, Math. Ann., 72 (1912), 244-261.
  • [5] T. H. Gronwall, Uber die Laplacesche Reihe, Math. Ann, 74 (1913), 213-270.
  • [6] T. H. Gronwall, On the degree of convergence of Laplace series, Trans. Amer. Math. So, 15 (1914), 1-30.
  • [7] G. H. Hardy, Note on Lebesgue's constants in the theory of Fourier series, J. London Math. Soc, 17 (1942), 4-13.
  • [8] L. Lorch, The Lebesgue constants for Jacobi series, I, Proc. Amer. Math. Soc, 10 (1959), 756-761.
  • [9] L. Lorch, The Lebesgue constants for Jacobi series, II, Amer. J. Math, 81 (1959), 875-888.
  • [10] L. Lorch, private communication.
  • [11] F. W. J. Olver, Asymptotics and Special Functions, AcademicPress,New York, 1974.
  • [12] H. Rau, ber die Lebesgueschen Konstanten der Reihenentwicklungen nach Jaco- bischen Polynomen, J. Reine Angew. Math., 161 (1929),237-254.
  • [13] G. Szeg, ber die Lebesgueschen Konstanten bei den Fourierschen Reihen, in The Collected Papers of Gabor Szego, Vol. 1, pp. 309-313, R. Askey, ed.,Birkhauser, Cambridge, MA,1982.
  • [14] G. Szeg, Uber einige asymptotische Entwicklungen der Legendreschen Funktionen, Proc. London Math. Soc,(2),36 (1932), 427-450.
  • [15] G. Szeg, ber eine von Herrn S. Berstein herruhrende Abschtzung der Legendreschen Polynome, Math. Ann., 108 (1933),360-369.
  • [16] G. Szeg, Asymptotische Entwicklungen der Jacobischen Polynome, Schr. der Knig. Gelehr. Gesell. Naturwiss.KL, 10 (1933),33-112.
  • [17] G. Szeg, Orthogonal Polynomials, Colloquium Publications, Vol. 23, 3rd ed., Amer. Math. Soc, Providence, RI1967.
  • [18] G. N. Watson, The constants of Landau and Lebesgue, Quart. J. Math., 1 (1930), 310-318.
  • [19] A. Zygmund, Trigonometric Series, Warsaw, 1935.